16 research outputs found

    Spotsizer: High-throughput quantitative analysis of microbial growth

    Get PDF
    Microbial colony growth can serve as a useful readout in assays for studying complex genetic interactions or the effects of chemical compounds. Although computational tools for acquiring quantitative measurements of microbial colonies have been developed, their utility can be compromised by inflexible input image requirements, non-trivial installation procedures, or complicated operation. Here, we present the Spotsizer software tool for automated colony size measurements in images of robotically arrayed microbial colonies. Spotsizer features a convenient graphical user interface (GUI), has both single-image and batch-processing capabilities, and works with multiple input image formats and different colony grid types. We demonstrate how Spotsizer can be used for high-throughput quantitative analysis of fission yeast growth. The user-friendly Spotsizer tool provides rapid, accurate, and robust quantitative analyses of microbial growth in a high-throughput format. Spotsizer is freely available at https://data.csiro.au/dap/landingpage?pid=csiro:15330 under a proprietary CSIRO license

    A comparison of classification algorithms within the Classifynder pollen imaging system

    Get PDF
    We describe an investigation into how Massey University's Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University's pollen reference collection (2890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set. In addition to the Classifynder's native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples. © 2013 AIP Publishing LLC

    A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field

    Get PDF
    Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R 2=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field

    An Unmixing Algorithm Based on a Large Library of Shortwave Infrared Spectra

    No full text
    The unmixing algorithm described in this paper has been motivated by a “spectral library” of pure shortwave infrared reflectance spectra that we started building in the early 1990’s. The library currently consists of 493 samples, representing 60 nominally pure materials (mostly minerals, but also water, dry vegetation and several man-made materials). The algorithm, implemented in software called The Spectral Assistant (TSA), is designed to analyse quickly tens to hundreds of thousands of spectra measured from drill core or chips using CSIRO’s HyLogger and HyChips instruments, and other commercial reflectance spectrometers. Individual samples typically are composed of a small number of minerals. Therefore, in order to avoid overfitting, the TSA algorithm utilises fast subset selection procedures to identify the most likely minerals in the mixture. Other novel aspects of the algorithm include the simultaneous fitting of the low frequency background with mineral identification (which provides greater model flexibility) and the combined fitting being carried out in penalised canonical variate space (which has certain optimality properties under an idealised model). The performance of the algorithm is illustrated on a few key examples. Discussion includes its wider applicability, its limitations and possible future extensions and modifications

    Pollen image classification using the classifynder system: Algorithm comparison and a case study on New Zealand honey

    No full text
    We describe an investigation into how Massey University’s Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University’s pollen reference collection (2,890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set.We additionally work through a real world case study where we assess the ability of the system to determine the pollen make-up of samples of New Zealand honey. In addition to the Classifynder’s native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples

    A comparison between three sparse unmixing algorithms using a large library of shortwave infrared mineral spectra

    No full text
    The comparison described in this paper has been motivated by two things: 1) a ''spectral library'' of shortwave infrared reflectance spectra that we have built, consisting of the spectra of 60 nominally pure materials (mostly minerals, but also water, dry vegetation, and several man-made materials) and 2) the needs of users in the mining industry for the use of fast and accurate unmixing software to analyze tens to hundreds of thousands of spectra measured from drill core or chips using HyLogging instruments, and other commercial reflectance spectrometers. Individual samples are typically a mixture of only one, two, three, or occasionally four minerals. Therefore, in order to avoid overfitting, a sparse unmixing algorithm is required. We compare three such algorithms using some real world test data sets: full subset selection (FSS), sparse demixing (SD), and L1 regularization. To aid the comparison, we introduce two novel aspects: 1) the simultaneous fitting of the low frequency background with mineral identification (which provides greater model flexibility) and 2) the combined fitting being carried out using a suitably defined Mahalanobis distance; this has certain optimality properties under an idealized model. Together, these two innovations significantly improve the accuracy of the results. FSS and L1 regularization (suitably optimized) produce similar levels of accuracy, and are superior to SD. Discussion includes possible improvements to the algorithms, and their possible use in other domains

    Tubule detection in testis images using boundary weighting and circular shortest path

    No full text
    In studies of germ cell transplantation, measureing tubule diameters and counting cells from different populations using antibodies as markers are very important. Manual measurement of tubule sizes and cell counts is a tedious and sanity grinding work. In this paper, we propose a new boundary weighting based tubule detection method. We first enhance the linear features of the input image and detect the approximate centers of tubules. Next, a boundary weighting transform is applied to the polar transformed image of each tubule region and a circular shortest path is used for the boundary detection. Then, ellipse fitting is carried out for tubule selection and measurement. The algorithm has been tested on a dataset consisting of 20 images, each having about 20 tubules. Experiments show that the detection results of our algorithm are very close to the results obtained manually. © 2013 IEEE
    corecore