51 research outputs found
The role of nucleophosmin fusion sequences in the oncogenic activation of the (2;5) translocation protein, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)
A thesis submitted to the Faculty of Science, University of the
Witwatersrand, Johannesburg, South Africa, in fulfillment of the requirements
for the degree of Doctor of Philosophy.
Johannesburg, 1996The NPM-ALK fusion gene, formed by the t(2;5)(p23;q35) in non-Hodgkin's
lymphoma encodes a 75kDa hybrid protein that contains the amino-terminal
118 amino acid residues of the nucleolar phosphoprotein nucleophosmin
(NPM) joined to the entire cytoptasmic portion of the receptor tyrosine
kinase, anaplastic lymphoma kinase (ALK). The transforming ability of NPM-ALK
is demonstrated and it is shown that oncogenesis by the chimaeric
protein requires the activation of its kinase function as a result of
oligomerisation mediated by the NPM segment. [Abbreviated Abstract. Open document to view full version
Functional and antigenic properties of GlpO from Mycoplasma mycoides subsp. mycoides SC: characterization of a flavin adenine dinucleotide-binding site deletion mutant
L-α-glycerophosphate oxidase (GlpO) plays a central role in virulence of Mycoplasma mycoides subsp. mycoides SC, a severe bacterial pathogen causing contagious bovine pleuropneumonia (CBPP). It is involved in production and translocation of toxic H2O2 into the host cell, causing inflammation and cell death. The binding site on GlpO for the cofactor flavin adenine dinucleotide (FAD) has been identified as Gly
12−Gly13−Gly
14−Ile15−Ile16−Gly
17. Recombinant GlpO lacking these six amino acids (GlpOΔFAD) was unable to bind FAD and was also devoid of glycerophosphate oxidase activity, in contrast to non-modified recombinant GlpO that binds FAD and is enzymatically active. Polyclonal monospecific antibodies directed against GlpOΔFAD, similarly to anti-GlpO antibodies, neutralised H2O2 production of M. mycoides subsp. mycoides SC grown in the presence of glycerol, as well as cytotoxicity towards embryonic calf nasal epithelial (ECaNEp) cells. The FAD-binding site of GlpO is therefore suggested as a valuable target site for the future construction of deletion mutants to yield attenuated live vaccines of M. mycoides subsp. mycoides SC necessary to efficiently combat CBPP
Big Data-Enhanced Risk Management
Today’s global and complex supply networks are susceptible to a broad variety of internal and external risks. Thus, comprehensive and innovative approaches to risk management are required. This paper addresses the question of how Big Data can be used for the implementation of an advanced risk management system. A conceptual framework covering three major dimensions of Big Data-driven risk management, i.e. type of risk, risk management phases and available technology, is introduced. Additionally, selected application examples for early detection, assessment, mitigation and prevention of risks in supply networks are provided
β-D-Glucoside utilization by Mycoplasma mycoides subsp. mycoides SC: possible involvement in the control of cytotoxicity towards bovine lung cells
BACKGROUND: Contagious bovine pleuropneumonia (CBPP) caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC) is among the most serious threats for livestock producers in Africa. Glycerol metabolism-associated H(2)O(2 )production seems to play a crucial role in virulence of this mycoplasma. A wide number of attenuated strains of M. mycoides subsp. mycoides SC are currently used in Africa as live vaccines. Glycerol metabolism is not affected in these vaccine strains and therefore it does not seem to be the determinant of their attenuation. A non-synonymous single nucleotide polymorphism (SNP) in the bgl gene coding for the 6-phospho-β-glucosidase (Bgl) has been described recently. The SNP differentiates virulent African strains isolated from outbreaks with severe CBPP, which express the Bgl isoform Val(204), from strains to be considered less virulent isolated from CBPP outbreaks with low mortality and vaccine strains, which express the Bgl isoform Ala(204). RESULTS: Strains of M. mycoides subsp. mycoides SC considered virulent and possessing the Bgl isoform Val(204), but not strains with the Bgl isoform Ala(204), do trigger elevated levels of damage to embryonic bovine lung (EBL) cells upon incubation with the disaccharides (i.e., β-D-glucosides) sucrose and lactose. However, strains expressing the Bgl isoform Val(204 )show a lower hydrolysing activity on the chromogenic substrate p-nitrophenyl-β-D-glucopyranoside (pNPbG) when compared to strains that possess the Bgl isoform Ala(204). Defective activity of Bgl in M. mycoides subsp. mycoides SC does not lead to H(2)O(2 )production. Rather, the viability during addition of β-D-glucosides in medium-free buffers is higher for strains harbouring the Bgl isoform Val(204 )than for those with the isoform Ala(204). CONCLUSION: Our results indicate that the studied SNP in the bgl gene is one possible cause of the difference in bacterial virulence among strains of M. mycoides subsp. mycoides SC. Bgl does not act as a direct virulence factor, but strains possessing the Bgl isoform Val(204 )with low hydrolysing activity are more prone to survive in environments that contain high levels of β-D-glucosides, thus contributing in some extent to mycoplasmaemia
Mycoplasma bovis shares insertion sequences with Mycoplasma agalactiae and Mycoplasma mycoides subsp. mycoides SC: Evolutionary and developmental aspects
Three new insertion elements, ISMbov1, ISMbov2 and ISMbov3, which are closely related to ISMag1 (Mycoplasma agalactiae), ISMmy1 and IS1634 (both Mycoplasma mycoides subsp. mycoides SC), respectively, have been discovered in Mycoplasma bovis, an important pathogen of cattle. Southern blotting showed that the genome of M. bovis harbours 6-12 copies of ISMbov1, 11-15 copies of ISMbov2 and 4-10 copies of ISMbov3, depending on the strain. A fourth insertion element, the IS30-like element, is present in 4-8 copies. This high number of IS elements in M. bovis, which represent a substantial part of its genome, and their relatedness with IS elements of both M. agalactiae and M. mycoides subsp. mycoides SC suggest the occurrence of two evolutionary events: (i) a divergent evolution into M. agalactiae and M. bovis upon infection of different hosts; (ii) a horizontal transfer of IS elements during co-infection with M. mycoides subsp. mycoides SC and M. bovis of a same bovine hos
IND-Enabling Studies for a Clinical Trial to Genetically Program a Persistent Cancer-Targeted Immune System
PURPOSE:
To improve persistence of adoptively transferred T-cell receptor (TCR)-engineered T cells and durable clinical responses, we designed a clinical trial to transplant genetically-modified hematopoietic stem cells (HSCs) together with adoptive cell transfer of T cells both engineered to express an NY-ESO-1 TCR. Here, we report the preclinical studies performed to enable an investigational new drug (IND) application.
EXPERIMENTAL DESIGN:
HSCs transduced with a lentiviral vector expressing NY-ESO-1 TCR and the PET reporter/suicide gene HSV1-sr39TK and T cells transduced with a retroviral vector expressing NY-ESO-1 TCR were coadministered to myelodepleted HLA-A2/Kb mice within a formal Good Laboratory Practice (GLP)-compliant study to demonstrate safety, persistence, and HSC differentiation into all blood lineages. Non-GLP experiments included assessment of transgene immunogenicity and in vitro viral insertion safety studies. Furthermore, Good Manufacturing Practice (GMP)-compliant cell production qualification runs were performed to establish the manufacturing protocols for clinical use.
RESULTS:
TCR genetically modified and ex vivo-cultured HSCs differentiated into all blood subsets in vivo after HSC transplantation, and coadministration of TCR-transduced T cells did not result in increased toxicity. The expression of NY-ESO-1 TCR and sr39TK transgenes did not have a detrimental effect on gene-modified HSC's differentiation to all blood cell lineages. There was no evidence of genotoxicity induced by the lentiviral vector. GMP batches of clinical-grade transgenic cells produced during qualification runs had adequate stability and functionality.
CONCLUSIONS:
Coadministration of HSCs and T cells expressing an NY-ESO-1 TCR is safe in preclinical models. The results presented in this article led to the FDA approval of IND 17471
Non-randomized therapy trial to determine the safety and efficacy of heavy ion radiotherapy in patients with non-resectable osteosarcoma
<p>Abstract</p> <p>Background</p> <p>Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. For effective treatment, local control of the tumor is absolutely critical, because the chances of long term survival are <10% and might effectively approach zero if a complete surgical resection of the tumor is not possible. Up to date there is no curative treatment protocol for patients with non-resectable osteosarcomas, who are excluded from current osteosarcoma trials, e.g. <it>EURAMOS1</it>. Local photon radiotherapy has previously been used in small series and in an uncontrolled, highly individualized fashion, which, however, documented that high dose radiotherapy can, in principle, be used to achieve local control. Generally the radiation dose that is necessary for a curative approach can hardly be achieved with conventional photon radiotherapy in patients with non-resectable tumors that are usually located near radiosensitive critical organs such as the brain, the spine or the pelvis. In these cases particle Radiotherapy (proton therapy (PT)/heavy ion therapy (HIT) may offer a promising new alternative. Moreover, compared with photons, heavy ion beams provide a higher physical selectivity because of their finite depth coverage in tissue. They achieve a higher relative biological effectiveness. Phase I/II dose escalation studies of HIT in adults with non-resectable bone and soft tissue sarcomas have already shown favorable results.</p> <p>Methods/Design</p> <p>This is a monocenter, single-arm study for patients ≥ 6 years of age with non-resectable osteosarcoma. Desired target dose is 60-66 Cobalt Gray Equivalent (Gy E) with 45 Gy PT (proton therapy) and a carbon ion boost of 15-21 GyE. Weekly fractionation of 5-6 × 3 Gy E is used. PT/HIT will be administered exclusively at the Ion Radiotherapy Center in Heidelberg. Furthermore, FDG-PET imaging characteristics of non-resectable osteosarcoma before and after PT/HIT will be investigated prospectively. Systemic disease before and after PT/HIT is targeted by standard chemotherapy protocols and is not part of this trial.</p> <p>Discussion</p> <p>The primary objectives of this trial are the determination of feasibility and toxicity of HIT. Secondary objectives are tumor response, disease free survival and overall survival. The aim is to improve outcome for patients with non-resectable osteosarcoma.</p> <p>Trail Registration</p> <p>Registration number (ClinicalTrials.gov): NCT01005043</p
Meeting Report: Aging Research and Drug Discovery
Aging is the single largest risk factor for most chronic diseases, and thus possesses large socioeconomic interest to continuously aging societies. Consequently, the field of aging research is expanding alongside a growing focus from the industry and investors in aging research. This year's 8th Annual Aging Research and Drug Discovery ARDD) meeting was organized as a hybrid meeting from August 30th to September 3rd 2021 with more than 130 attendees participating on-site at the Ceremonial Hall at University of Copenhagen, Denmark, and 1800 engaging online. The conference comprised of presentations from 75 speakers focusing on new research in topics including mechanisms of aging and how these can be modulated as well as the use of AI and new standards of practices within aging research. This year, a longevity workshop was included to build stronger connections with the clinical community
- …