1,763 research outputs found

    Pion and Kaon Spectra from Distributed Mass Quark Matter

    Full text link
    After discussing some hints for possible masses of quasiparticles in quark matter on the basis of lattice equation of state, we present pion and kaon transverse spectra obtained by recombining quarks with distributed mass and thermal cut power-law momenta as well as fragmenting by NLO pQCD with intrinsic kTk_T {and nuclear} broadening.Comment: Talk given at SQM 200

    Strange quark matter: mapping QCD lattice results to finite baryon density by a quasi-particle model

    Full text link
    A quasi-particle model is presented which describes QCD lattice results for the 0, 2 and 4 quark-flavor equation of state. The results are mapped to finite baryo-chemical potentials. As an application of the model we make a prediction of deconfined matter with appropriate inclusion of strange quarks and consider pure quark stars.Comment: invited talk at Strangeness 2000, Berkeley; prepared version for the proceedings, 5 page

    Modeling Eclipses in the Classical Nova V Persei: The Role of the Accretion Disk Rim

    Full text link
    Multicolor (BVRI) light curves of the eclipsing classical nova V Per are presented, and a total of twelve new eclipse timings are measured for the system. When combined with previous eclipse timings from the literature, these timings yield a revised ephemeris for the times of mid-eclipse given by HJD = 2,447,442.8260(1) + 0.107123474(3) E. The eclipse profiles are analyzed with a parameter-fitting model that assumes four sources of luminosity: a white dwarf primary star, a main-sequence secondary star, a flared accretion disk with a rim, and a bright spot at the intersection of the mass-transfer stream and the disk periphery. A matrix of model solutions are computed, covering an extensive range of plausible parameter values. The solution matrix is then explored to determine the optimum values for the fitting parameters and their associated errors. For models that treat the accretion disk as a flat structure without a rim, optimum fits require that the disk have a flat temperature profile. Although models with a truncated inner disk (R_in >> R_wd) result in a steeper temperature profile, steady-state models with a temperature profile characterized by T(r) \propto r^{-3/4} are found only for models with a significant disk rim. A comparison of the observed brightness and color at mid-eclipse with the photometric properties of the best-fitting model suggests that V Per lies at a distance of ~ 1 kpc.Comment: Accepted for publication in The Astrophysical Journal. Thirty-nine pages, including 9 figures. V2 - updated to include additional references and related discussion to previous work overlooked in the original version, and to correct a typo in the ephemeris given in the abstract. V3 - Minor typos corrected. The paper is scheduled for the 20 June 2006 issue of the ApJ. V4 - An error in equation (9) has been corrected. The results presented in the paper were not affected, as all computations were made using the correct formulation of this equatio

    Nuclear mitochondrial DNA sequences in the rabbit genome

    Get PDF
    Numtogenesis is observable in the mammalian genomes resulting in the integration of mitochondrial segments into the nuclear genomes (numts). To identify numts in rabbit, we aligned mitochondrial and nuclear genomes. Alignment significance threshold was calculated and individual characteristics of numts were analysed. We found 153 numts in the nuclear genome. The GC content of numts were significantly lower than the GC content of their genomic flanking regions or the genome itself. The frequency of three mammalian-wide interspersed repeats were increased in the proximity of numts. The decreased GC content around numts strengthen the theory which supposes a link between DNA structural instability and numt integration

    Collective Deceleration of Ultrarelativistic Nuclei and Creation of Quark-Gluon Plasma

    Get PDF
    We propose a unified space-time picture of baryon stopping and quark-gluon plasma creation in ultrarelativistic heavy-ion collisions. It is assumed that the highly Lorentz contracted nuclei are decelerated by the coherent color field which is formed between them after they pass through each other. This process continues until the field is neutralized by the Schwinger mechanism. Conservation of energy and momentum allow us to calculate the energy losses of the nuclear slabs and the initial energy density of the quark-gluon plasma.Comment: 11 pages in revtex, 2 eps figure

    Comparative study on the uniform energy deposition achievable via optimized plasmonic nanoresonator distributions

    Get PDF
    Plasmonic nanoresonators of core-shell composition and nanorod shape were optimized to tune their absorption cross-section maximum to the central wavelength of a short pulse. Their distribution along a pulse-length scaled target was optimized to maximize the absorptance with the criterion of minimal absorption difference in between neighbouring layers. Successive approximation of layer distributions made it possible to ensure almost uniform deposited energy distribution up until the maximal overlap of two counter-propagating pulses. Based on the larger absorptance and smaller uncertainty in absorptance and energy distribution core-shell nanoresonators override the nanorods. However, optimization of both nanoresonator distributions has potential applications, where efficient and uniform energy deposition is crucial, including phase transitions and even fusion

    Observations of the SW Sextantis star DW Ursae Majoris with the Far Ultraviolet Spectroscopic Explorer

    Full text link
    We present an analysis of the first far-ultraviolet observations of the SW Sextantis-type cataclysmic variable DW Ursae Majoris, obtained in November 2001 with the Far Ultraviolet Spectroscopic Explorer. The time-averaged spectrum of DW UMa shows a rich assortment of emission lines (plus some contamination from interstellar absorption lines including molecular hydrogen). Accretion disk model spectra do not provide an adequate fit to the far-ultraviolet spectrum of DW UMa. We constructed a light curve by summing far-ultraviolet spectra extracted in 60-sec bins; this shows a modulation on the orbital period, with a maximum near photometric phase 0.93 and a minimum half an orbit later. No other periodic variability was found in the light curve data. We also extracted spectra in bins spanning 0.1 in orbital phase; these show substantial variation in the profile shapes and velocity shifts of the emission lines during an orbital cycle of DW UMa. Finally, we discuss possible physical models that can qualitatively account for the observed far-ultraviolet behavior of DW UMa, in the context of recent observational evidence for the presence of a self-occulting disk in DW UMa and the possibility that the SW Sex stars may be the intermediate polars with the highest mass transfer rates and/or weakest magnetic fields.Comment: accepted by the Astronomical Journal; 36 pages, including 12 figures and 4 table

    The Partition Function and Level Density for Yang-Mills-Higgs Quantum Mechanics

    Get PDF
    We calculate the partition function Z(t)Z(t) and the asymptotic integrated level density N(E)N(E) for Yang-Mills-Higgs Quantum Mechanics for two and three dimensions (n=2,3n = 2, 3). Due to the infinite volume of the phase space Γ\Gamma on energy shell for n=2n= 2, it is not possible to disentangle completely the coupled oscillators (x2y2x^2 y^2-model) from the Higgs sector. The situation is different for n=3n = 3 for which Γ\Gamma is finite. The transition from order to chaos in these systems is expressed by the corresponding transitions in Z(t)Z(t) and N(E)N(E), analogous to the transitions in adjacent level spacing distribution from Poisson distribution to Wigner-Dyson distribution. We also discuss a related system with quartic coupled oscillators and two dimensional quartic free oscillators for which, contrary to YMHQM, both coupling constants are dimensionless.Comment: 10 pages, LaTeX; minor changes; version accepted for publication as a Letter in J. Phys.

    Dynamical masses, absolute radii and 3D orbits of the triply eclipsing star HD 181068 from Kepler photometry

    Get PDF
    HD 181068 is the brighter of the two known triply eclipsing hierarchical triple stars in the Kepler field. It has been continuously observed for more than 2 yr with the Kepler space telescope. Of the nine quarters of the data, three have been obtained in short-cadence mode, that is one point per 58.9 s. Here we analyse this unique data set to determine absolute physical parameters (most importantly the masses and radii) and full orbital configuration using a sophisticated novel approach. We measure eclipse timing variations (ETVs), which are then combined with the single-lined radial velocity measurements to yield masses in a manner equivalent to double-lined spectroscopic binaries. We have also developed a new light-curve synthesis code that is used to model the triple, mutual eclipses and the effects of the changing tidal field on the stellar surface and the relativistic Doppler beaming. By combining the stellar masses from the ETV study with the simultaneous light-curve analysis we determine the absolute radii of the three stars. Our results indicate that the close and the wide subsystems revolve in almost exactly coplanar and prograde orbits. The newly determined parameters draw a consistent picture of the system with such details that have been beyond reach before
    • …
    corecore