244 research outputs found

    The a priori Tan Theta Theorem for spectral subspaces

    Full text link
    Let A be a self-adjoint operator on a separable Hilbert space H. Assume that the spectrum of A consists of two disjoint components s_0 and s_1 such that the set s_0 lies in a finite gap of the set s_1. Let V be a bounded self-adjoint operator on H off-diagonal with respect to the partition spec(A)=s_0 \cup s_1. It is known that if ||V||<\sqrt{2}d, where d=\dist(s_0,s_1), then the perturbation V does not close the gaps between s_0 and s_1 and the spectrum of the perturbed operator L=A+V consists of two isolated components s'_0 and s'_1 grown from s_0 and s_1, respectively. Furthermore, it is known that if V satisfies the stronger bound ||V||< d then the following sharp norm estimate holds: ||E_L(s'_0)-E_A(s_0)|| \leq sin(arctan(||V||/d)), where E_A(s_0) and E_L(s'_0) are the spectral projections of A and L associated with the spectral sets s_0 and s'_0, respectively. In the present work we prove that this estimate remains valid and sharp also for d \leq ||V||< \sqrt{2}d, which completely settles the issue.Comment: v3: some typos fixed; Examples adde

    On the Lieb-Thirring constants L_gamma,1 for gamma geq 1/2

    Full text link
    Let Ei(H)E_i(H) denote the negative eigenvalues of the one-dimensional Schr\"odinger operator Hu:=uVu, V0,Hu:=-u^{\prime\prime}-Vu,\ V\geq 0, on L2(R)L_2({\Bbb R}). We prove the inequality \sum_i|E_i(H)|^\gamma\leq L_{\gamma,1}\int_{\Bbb R} V^{\gamma+1/2}(x)dx, (1) for the "limit" case γ=1/2.\gamma=1/2. This will imply improved estimates for the best constants Lγ,1L_{\gamma,1} in (1), as $1/2<\gamma<3/2.Comment: AMS-LATEX, 15 page

    Scattering solutions in a network of thin fibers: small diameter asymptotics

    Full text link
    Small diameter asymptotics is obtained for scattering solutions in a network of thin fibers. The asymptotics is expressed in terms of solutions of related problems on the limiting quantum graph. We calculate the Lagrangian gluing conditions at vertices for the problems on the limiting graph. If the frequency of the incident wave is above the bottom of the absolutely continuous spectrum, the gluing conditions are formulated in terms of the scattering data for each individual junction of the network

    A new numerical approach to Anderson (de)localization

    Full text link
    We develop a new approach for the Anderson localization problem. The implementation of this method yields strong numerical evidence leading to a (surprising to many) conjecture: The two dimensional discrete random Schroedinger operator with small disorder allows states that are dynamically delocalized with positive probability. This approach is based on a recent result by Abakumov-Liaw-Poltoratski which is rooted in the study of spectral behavior under rank-one perturbations, and states that every non-zero vector is almost surely cyclic for the singular part of the operator. The numerical work presented is rather simplistic compared to other numerical approaches in the field. Further, this method eliminates effects due to boundary conditions. While we carried out the numerical experiment almost exclusively in the case of the two dimensional discrete random Schroedinger operator, we include the setup for the general class of Anderson models called Anderson-type Hamiltonians. We track the location of the energy when a wave packet initially located at the origin is evolved according to the discrete random Schroedinger operator. This method does not provide new insight on the energy regimes for which diffusion occurs.Comment: 15 pages, 8 figure

    Monodromy of Cyclic Coverings of the Projective Line

    Full text link
    We show that the image of the pure braid group under the monodromy action on the homology of a cyclic covering of degree d of the projective line is an arithmetic group provided the number of branch points is sufficiently large compared to the degree.Comment: 47 pages (to appear in Inventiones Mathematicae

    Schrödinger operators with δ and δ′-potentials supported on hypersurfaces

    Get PDF
    Self-adjoint Schrödinger operators with δ and δ′-potentials supported on a smooth compact hypersurface are defined explicitly via boundary conditions. The spectral properties of these operators are investigated, regularity results on the functions in their domains are obtained, and analogues of the Birman–Schwinger principle and a variant of Krein’s formula are shown. Furthermore, Schatten–von Neumann type estimates for the differences of the powers of the resolvents of the Schrödinger operators with δ and δ′-potentials, and the Schrödinger operator without a singular interaction are proved. An immediate consequence of these estimates is the existence and completeness of the wave operators of the corresponding scattering systems, as well as the unitary equivalence of the absolutely continuous parts of the singularly perturbed and unperturbed Schrödinger operators. In the proofs of our main theorems we make use of abstract methods from extension theory of symmetric operators, some algebraic considerations and results on elliptic regularity

    Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems

    Get PDF
    Gapped ground states of quantum spin systems have been referred to in the physics literature as being `in the same phase' if there exists a family of Hamiltonians H(s), with finite range interactions depending continuously on s[0,1]s \in [0,1], such that for each ss, H(s) has a non-vanishing gap above its ground state and with the two initial states being the ground states of H(0) and H(1), respectively. In this work, we give precise conditions under which any two gapped ground states of a given quantum spin system that 'belong to the same phase' are automorphically equivalent and show that this equivalence can be implemented as a flow generated by an ss-dependent interaction which decays faster than any power law (in fact, almost exponentially). The flow is constructed using Hastings' 'quasi-adiabatic evolution' technique, of which we give a proof extended to infinite-dimensional Hilbert spaces. In addition, we derive a general result about the locality properties of the effect of perturbations of the dynamics for quantum systems with a quasi-local structure and prove that the flow, which we call the {\em spectral flow}, connecting the gapped ground states in the same phase, satisfies a Lieb-Robinson bound. As a result, we obtain that, in the thermodynamic limit, the spectral flow converges to a co-cycle of automorphisms of the algebra of quasi-local observables of the infinite spin system. This proves that the ground state phase structure is preserved along the curve of models H(s),0s1H(s), 0\leq s\leq 1.Comment: Updated acknowledgments and new email address of S

    On non-local variational problems with lack of compactness related to non-linear optics

    Full text link
    We give a simple proof of existence of solutions of the dispersion manage- ment and diffraction management equations for zero average dispersion, respectively diffraction. These solutions are found as maximizers of non-linear and non-local vari- ational problems which are invariant under a large non-compact group. Our proof of existence of maximizer is rather direct and avoids the use of Lions' concentration compactness argument or Ekeland's variational principle.Comment: 30 page
    corecore