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Schrödinger Operators with δ and
δ′-Potentials Supported on Hypersurfaces

Jussi Behrndt, Matthias Langer and Vladimir Lotoreichik

Abstract. Self-adjoint Schrödinger operators with δ and δ′-potentials sup-
ported on a smooth compact hypersurface are defined explicitly via
boundary conditions. The spectral properties of these operators are inves-
tigated, regularity results on the functions in their domains are obtained,
and analogues of the Birman–Schwinger principle and a variant of Krein’s
formula are shown. Furthermore, Schatten–von Neumann type estimates
for the differences of the powers of the resolvents of the Schrödinger oper-
ators with δ and δ′-potentials, and the Schrödinger operator without a
singular interaction are proved. An immediate consequence of these esti-
mates is the existence and completeness of the wave operators of the cor-
responding scattering systems, as well as the unitary equivalence of the
absolutely continuous parts of the singularly perturbed and unperturbed
Schrödinger operators. In the proofs of our main theorems we make use
of abstract methods from extension theory of symmetric operators, some
algebraic considerations and results on elliptic regularity.

1. Introduction

Schrödinger operators with δ and δ′-potentials supported on hypersurfaces
play an important role in mathematical physics and have attracted a lot of
attention in the recent past; they are used for the description of quantum
particles interacting with charged hypersurfaces. In this introduction we first
define the differential operators which are studied in the present paper. Fur-
thermore, we state and explain our main results on the spectral and scattering
properties of these operators in an easily understandable but mathematically
exact form in Theorems A–D below. Although the remaining part of the paper
can be viewed as a proof of these theorems we mention that Sects. 3 and 4
contain not only slightly generalized versions of Theorems A–D but also other
results which are of independent interest.
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In the following let Σ be a compact connected C∞-hypersurface which
separates the Euclidean space R

n into a bounded domain Ωi and an unbounded
domain Ωe with common boundary ∂Ωe = ∂Ωi = Σ. Denote by δΣ the δ-dis-
tribution supported on Σ and by δ′

Σ its normal derivative in the distributional
sense with the normal pointing outwards of Ωi. The main objective of the
present paper is to define and study the spectral properties of Schrödinger
operators associated with the formal differential expressions

Lδ,α := −Δ + V − α
〈
δΣ, ·

〉
δΣ and Lδ′,β := −Δ + V − β

〈
δ′
Σ, ·

〉
δ′
Σ. (1.1)

Here V ∈ L∞(Rn) is assumed to be a real-valued potential and α, β : Σ → R

are real-valued measurable functions, often called strengths of interactions in
mathematical physics. In order to define the Schrödinger operators with δ and
δ′-interactions rigorously, it is necessary to specify suitable domains in L2(Rn)
which take into account the δ and δ′-interaction on the hypersurface Σ. In our
approach this will be done explicitly via suitable interface conditions on Σ for
a certain function space in L2(Rn). One of the main advantages of our method
compared with the usual approach via semi-bounded closed sesquilinear forms
(see, e.g. [18,30]) is that δ′-interactions can be treated without any additional
difficulties.

Throughout the paper we write the functions f ∈ L2(Rn) in the form f =
fi⊕fe with respect to the corresponding space decomposition L2(Ωi)⊕L2(Ωe).
For the definition of Schrödinger operators with δ or δ′-potentials we introduce
the following subspaces

H
3/2
Δ (Ωi) :=

{
fi ∈ H3/2(Ωi) : Δfi ∈ L2(Ωi)

}
,

H
3/2
Δ (Ωe) :=

{
fe ∈ H3/2(Ωe) : Δfe ∈ L2(Ωe)

}
,

of the Sobolev spaces H3/2(Ωi) and H3/2(Ωe), respectively, and their orthog-
onal sum in L2(Rn):

H
3/2
Δ (Rn\Σ) := H

3/2
Δ (Ωi) ⊕H

3/2
Δ (Ωe);

cf. [2,59] and Sects. 2.3 and 2.4 for more details. The trace of a function
fi ∈ H

3/2
Δ (Ωi) and the trace of the normal derivative ∂νifi (with the normal

νi pointing outwards) are denoted by fi|Σ and ∂νifi|Σ, respectively. Similarly,
for the exterior domain and fe ∈ H

3/2
Δ (Ωe) we write fe|Σ and ∂νefe|Σ; here νe

and νi are pointing in opposite directions.
The main objects we study in this paper are the operators given in the fol-

lowing definition, which are associated with the formal differential expressions
in (1.1).

Definition. Let α ∈ L∞(Σ) be a real-valued function on Σ. The Schrödinger
operator Aδ,α corresponding to the δ-interaction with strength α on Σ is
defined as

Aδ,αf := −Δf + V f,

domAδ,α :=

{

f ∈ H
3/2
Δ (Rn\Σ) :

fi|Σ = fe|Σ
αfi|Σ = ∂νefe|Σ + ∂νifi|Σ

}

.
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Let β be a real-valued function on Σ such that 1/β ∈ L∞(Σ). The Schrödinger
operator Aδ′,β corresponding to the δ′-interaction with strength β on Σ is
defined as

Aδ′,βf := −Δf + V f,

domAδ′,β :=

{

f ∈ H
3/2
Δ (Rn\Σ) :

∂νefe|Σ = −∂νifi|Σ
β∂νefe|Σ = fe|Σ − fi|Σ

}

.

The boundary conditions in the domains of Aδ,α and Aδ′,β fit with the for-
mal differential expressions in (1.1). In order to see this for Aδ,α we introduce
the closed symmetric form

aδ,α[f, g] = (∇f,∇g)L2(Rn;Cn) + (V f, g)L2(Rn) − (αf |Σ, g|Σ)L2(Σ)

on H1(Rn). Further making use of the boundary conditions fi|Σ = fe|Σ and
αfi|Σ = ∂νefe|Σ + ∂νifi|Σ for f ∈ domAδ,α and the first Green’s identity one
can easily see that

(Aδ,αf, g)L2(Rn) = aδ,α[f, g] =
〈Lδ,αf, g

〉

for all g ∈ H1(Rn). This also shows that Aδ,α coincides with the self-adjoint
operator associated with the closed symmetric form aδ,α; cf. Proposition 3.7
for more details. The quadratic form method has been used in various papers
for the definition of Schrödinger operators with δ-perturbations supported on
curves and hypersurfaces. We refer the reader to [18] and the review paper
[30] for more details and further references; we also mention [19,28,29,32–
35,39,58] for studies of eigenvalues, [16,31,38,70] for results on the absolutely
continuous spectrum, and [6,36,37,40,41,54,60,67] for related problems for
Schrödinger operators with δ-perturbations. We point out that the quadratic
form approach could not be adapted to the δ′-case so far; see the open problem
posed in [30, 7.2] and our solution in Proposition 3.15. For completeness we also
mention that the above definitions of the differential operators Aδ,α and Aδ′,β
are compatible with the ones for one-dimensional δ and δ′-point interactions
in [3,4].

In the next theorem, which is the first main result of this paper, we obtain
some basic properties of the Schrödinger operators Aδ,α and Aδ′,β . Here also
the free or unperturbed Schrödinger operator

Afreef = −Δf + V f, domAfree = H2(Rn),

is used. It is well known and easy to see that Afree is semi-bounded and self-
adjoint in L2(Rn). Recall that the essential spectrum σess(A) of a self-adjoint
operator A consists of all spectral points that are not isolated eigenvalues
of finite multiplicity. The statements in Theorem A below are contained in
Theorems 3.5, 3.11, 3.14 and 3.16 in Sects. 3.2–3.4.

Theorem A. The Schrödinger operators Aδ,α and Aδ′,β are self-adjoint oper-
ators in L2(Rn), which are bounded from below, and their essential spectra
satisfy

σess(Aδ,α) = σess(Aδ′,β) = σess(Afree). (1.2)
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If V ≡ 0, then σess(Aδ,α) = σess(Aδ′,β) = [0,∞) and the negative spectra
of the self-adjoint operators Aδ,α and Aδ′,β consist of finitely many negative
eigenvalues with finite multiplicities.

It is not surprising that additional smoothness assumptions on the func-
tions α and β in the boundary condition yield more regularity for the functions
in domAδ,α and domAδ′,β . The H2-case is of particular importance; see also
[17] where the Laplacian on a strip was considered. The next theorem follows
from Theorems 3.6 and 3.12. The Sobolev space of order one of L∞-functions
on Σ is denoted by W 1,∞(Σ).

Theorem B. If α ∈ W 1,∞(Σ), then domAδ,α is contained in H2(Ωi)⊕H2(Ωe).
If 1/β ∈ W 1,∞(Σ), then domAδ′,β is contained in H2(Ωi) ⊕H2(Ωe).

The fact that the essential spectra of the operators Aδ,α, Aδ′,β and Afree in
Theorem A coincide, follows from the observation that the resolvent differences
of these operators are compact. Roughly speaking this is a consequence of the
compactness of the hypersurface Σ and Sobolev embedding theorems. How-
ever, as can be expected from the classical results in [12] (see also [10,13,14,
23,49,52,53,61]), more specific considerations yield more precise Schatten–von
Neumann type estimates for the differences of the resolvents and their integer
powers, which then in turn imply existence and completeness of the wave oper-
ators of the scattering pairs {Aδ,α, Afree} and {Aδ′,β , Afree}; see, e.g. [56,65,72]
for more details and consequences.

Recall that a compact operator T is said to belong to the weak Schat-
ten–von Neumann ideal Sp,∞ if the sequence of singular values sk, i.e. the
sequence of eigenvalues of the non-negative operator (T ∗T )1/2, satisfies sk =
O(k−1/p), k → ∞. Note that Sp,∞ ⊂ Sp′ for all p′ > p, where Sp′ is the usual
Schatten–von Neumann ideal; cf. Sect. 2.1.

Theorem C. For the self-adjoint Schrödinger operators Aδ,α and Aδ′,β in
L2(Rn) the following statements hold.

(i) For all λ ∈ ρ(Aδ,α) ∩ ρ(Afree) we have

(Aδ,α − λ)−1 − (Afree − λ)−1 ∈ Sn−1
3 ,∞

and, in particular, the wave operators for the pair {Aδ,α, Afree} exist and
are complete when n = 2 or n = 3.

(ii) For all λ ∈ ρ(Aδ′,β) ∩ ρ(Afree) we have

(Aδ′,β − λ)−1 − (Afree − λ)−1 ∈ Sn−1
2 ,∞,

and, in particular, the wave operators for the pair {Aδ′,β , Afree} exist and
are complete when n = 2.

The scattering theory for operators with δ-potentials in the two-dimen-
sional case is partially developed in [36]. In higher dimensions it is necessary
to extend the estimates to higher powers of resolvents as we do in the next
main theorem under an additional local regularity assumption on the poten-
tial V . In particular, for sufficiently smooth V this implies the existence and
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completeness of the wave operators for the scattering pairs {Aδ,α, Afree} and
{Aδ′,β , Afree} in any space dimension. For k ∈ N0 the subspace of L∞(Rn)
which consists of all functions that admit partial derivatives in an open neigh-
bourhood of the hypersurface Σ up to order k in L∞(Rn) is denoted by
W k,∞

Σ (Rn).

Theorem D. Let the self-adjoint Schrödinger operators Aδ,α and Aδ′,β be as
above, and assume that V ∈ W 2m−2,∞

Σ (Rn) for some m ∈ N. Then the follow-
ing statements hold.

(i) For all l = 1, 2, . . . ,m and λ ∈ ρ(Aδ,α) ∩ ρ(Afree) we have

(Aδ,α − λ)−l − (Afree − λ)−l ∈ S n−1
2l+1 ,∞,

and, in particular, the wave operators for the pair {Aδ,α, Afree} exist and
are complete when 2m− 2 > n− 4.

(ii) For all l = 1, 2, . . . ,m and λ ∈ ρ(Aδ′,β) ∩ ρ(Afree) we have

(Aδ′,β − λ)−l − (Afree − λ)−l ∈ Sn−1
2l ,∞,

and, in particular, the wave operators for the pair {Aδ′,β , Afree} exist and
are complete when 2m− 2 > n− 3.

Note that, for m = 1, Theorem D reduces to Theorem C. The proof
of Theorem D is essentially a consequence of Krein’s formula, some algebraic
considerations and results on elliptic regularity. The statements in Theorem D
are contained in Theorems 4.3, 4.5 and Corollaries 4.4, 4.7.

The paper is organized as follows. Section 2 contains preliminary mate-
rial on Schatten–von Neumann classes, general extension theory of symmetric
operators and function spaces. In particular, we prove some useful abstract
lemmas on resolvent power differences in Sect. 2.1. Furthermore, in Sect. 2.2
we collect basic facts about quasi boundary triples—a convenient abstract tool
from [8,9] to study self-adjoint extensions of symmetric partial differential
operators—and recall a variant of Krein’s formula suitable for our purposes.
Section 3 is devoted to the rigorous mathematical definition and the investi-
gation of the spectral properties of the operators Aδ,α and Aδ′,β . In Sects. 3.2
and 3.3 we provide proofs of self-adjointness and sufficient conditions for
H2-regularity of the operator domains, cf. Theorems A and B, and we discuss
variants of the Birman–Schwinger principle for the description of eigenvalues
of the self-adjoint operators Aδ,α and Aδ′,β . All these results are obtained
by means of suitable quasi boundary triples constructed in these sections.
Section 3.2 is accompanied by a comparison with the sesquilinear form
approach to Schrödinger operators with δ-potentials on hypersurfaces. In
Sect. 3.4 we obtain basic spectral properties of the self-adjoint operators Aδ,α

and Aδ′,β such as lower semi-boundedness and finiteness of negative spectra if
V ≡ 0. Section 4 contains our main results on Schatten–von Neumann esti-
mates from Theorems C and D for resolvent power differences of operators
Aδ,α, Aδ′,β and Afree. As a direct consequence of these estimates we establish
the existence and completeness of wave operators for certain scattering pairs
arising in quantum mechanics.
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We emphasize again that the results in the body of the paper are some-
times stronger than in the introduction. Several theorems of their own inde-
pendent interest are formulated only in the main part. We also mention that
many of the results in the paper extend to more general second order differ-
ential operators with sufficiently smooth coefficients and also remain to be
true under weaker assumptions on the smoothness of the hypersurface Σ; in
this context we refer the reader to the recent papers [1,7,43–46,63] on elliptic
operators in non-smooth domains.

2. Preliminaries

This section contains some preliminary material that will be used in the main
part of the paper. In Sect. 2.1 we first recall some basic properties of Schatten–
von Neumann ideals and we prove an abstract lemma with sufficient conditions
for resolvent power differences to belong to some Schatten–von Neumann class.
The concept of quasi boundary triples and their Weyl functions from general
extension theory of symmetric operators is briefly reviewed in Sect. 2.2. Sec-
tions 2.3 and 2.4 contain mainly definitions and notations for the function
spaces used in the paper.

2.1. Sp and Sp,∞-Classes

Let H and G be separable Hilbert spaces. The space of bounded everywhere
defined linear operators from H into G is denoted by B(H,G), and we set
B(H) := B(H,H). The ideal of compact operators mapping from H into G is
denoted by S∞(H,G), and we set S∞(H) := S∞(H,H). We agree to write
S∞ when it is clear from the context between which spaces the operators act.
The singular values (or s-numbers) sk(T ), k = 1, 2, . . ., of a compact operator
T ∈ S∞(H,G) are defined as the eigenvalues of the non-negative compact
operator (T ∗T )1/2, enumerated in non-increasing order and with multiplicities
taken into account. Recall that the singular values of T and T ∗ coincide; see,
e.g. [47, II.§2.2]. The Schatten–von Neumann class of operator ideals Sp and
the weak Schatten–von Neumann class of operator ideals Sp,∞ are defined as

Sp :=
{
T ∈ S∞ :

∞∑

k=1

(
sk(T )

)p
< ∞

}
,

Sp,∞ :=
{
T ∈ S∞ : sk(T ) = O(k−1/p), k → ∞

}
,

p > 0;

they play an important role later on. We refer the reader to [47, III.§7 and
III.§14], [69, Chapter 2] and to [15, Chapter 11] for a detailed study of the
classes Sp and Sp,∞. If a compact operator T ∈ S∞(H,G) belongs to Sp or
Sp,∞, then we also write T ∈ Sp(H,G) or T ∈ Sp,∞(H,G), respectively, if the
spaces H and G are important in the context. Moreover, we set

Sp · Sq :=
{
T1T2 : T1 ∈ Sp, T2 ∈ Sq

}
,

Sp,∞ · Sq,∞ :=
{
T1T2 : T1 ∈ Sp,∞, T2 ∈ Sq,∞

}
.
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The proof of the next statement can be found in [15,47] and, e.g. [11,
Lemma 2.3].

Lemma 2.1. Let p, q, r, s, t > 0. Then the following statements are true:
(i) Sp · Sq = Sr and Sp,∞ · Sq,∞ = Sr,∞ when p−1 + q−1 = r−1, or,

equivalently

S 1
s

· S 1
t

= S 1
s+t

and S 1
s ,∞ · S 1

t ,∞ = S 1
s+t ,∞;

(ii) If T ∈ Sp, then T ∗ ∈ Sp; if T ∈ Sp,∞, then T ∗ ∈ Sp,∞;
(iii) Sp ⊂ Sp,∞ and Sp′,∞ ⊂ Sp for all p′ < p.

Let H and K be linear operators in a separable Hilbert space H and
assume that ρ(H) ∩ ρ(K) 
= ∅. In order to investigate properties of the differ-
ence of the mth powers of the resolvents,

(H − λ)−m − (K − λ)−m, λ ∈ ρ(H) ∩ ρ(K), m ∈ N,

recall that, for two elements a and b of some non-commutative algebra, the
following formula holds:

am − bm =
m−1∑

k=0

am−k−1
(
a− b

)
bk. (2.1)

Substituting a and b by the resolvents of H and K, respectively, and setting

Tm,k(λ) := (H − λ)−(m−k−1)
(
(H − λ)−1 − (K − λ)−1

)
(K − λ)−k (2.2)

for λ ∈ ρ(H) ∩ ρ(K),m ∈ N and k = 0, 1, . . . ,m − 1, we conclude from (2.1)
that

(H − λ)−m − (K − λ)−m =
m−1∑

k=0

Tm,k(λ) (2.3)

holds for all λ ∈ ρ(H) ∩ ρ(K) and m ∈ N. In the next lemma we show that
(H − λ)−m − (K − λ)−m belongs to Sp,∞ for all λ ∈ ρ(H) ∩ ρ(K) if all the
operators Tm,0(λ0), Tm,1(λ0), . . . , Tm,m−1(λ0) belong to Sp,∞ for some λ0 ∈
ρ(H)∩ρ(K). In the case m = 1 the statement is well known. We note that the
statement holds in the same form if the class Sp,∞ is replaced by any operator
ideal, e.g. Sp.

Lemma 2.2. Let H and K be linear operators in H such that ρ(H) ∩ ρ(K) 
=
∅. Moreover, let p > 0,m ∈ N and Tm,k be as in (2.2), and assume that
Tm,k(λ0) ∈ Sp,∞(H) for some λ0 ∈ ρ(H) ∩ ρ(K) and all k = 0, 1, . . . ,m − 1.
Then

(H − λ)−m − (K − λ)−m ∈ Sp,∞(H)

for all λ ∈ ρ(H) ∩ ρ(K).

Proof. For λ ∈ ρ(H) ∩ ρ(K) define

Eλ := I + (λ− λ0)(H − λ)−1 and Fλ := I + (λ− λ0)(K − λ)−1. (2.4)
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The resolvent identity implies that

Eλ(H − λ0)−1 =(H − λ0)−1+(λ− λ0)(H − λ)−1(H − λ0)−1 =(H − λ)−1

(2.5)

and, similarly,

(K − λ0)−1Fλ = (K − λ)−1. (2.6)

By induction we obtain

El
λ(H − λ0)−l = (H − λ)−l and (K − λ0)−lF l

λ = (K − λ)−l (2.7)

for all l ∈ N. Set D1(λ) := (H − λ)−1 − (K − λ)−1, λ ∈ ρ(H) ∩ ρ(K). Then
(2.5), (2.6) and (2.4) imply that

EλD1(λ0)Fλ = Eλ(H − λ0)−1Fλ − Eλ(K − λ0)−1Fλ

= (H − λ)−1Fλ − Eλ(K − λ)−1

= (H − λ)−1 + (λ− λ0)(H − λ)−1(K − λ)−1

−(K − λ)−1 − (λ− λ0)(H − λ)−1(K − λ)−1

= D1(λ). (2.8)

For k = 0, 1 . . . ,m − 1 and all λ ∈ ρ(H) ∩ ρ(K) we obtain from (2.7), (2.8)
and the facts that Eλ commutes with (H − λ0)−1 and Fλ commutes with
(K − λ0)−1 the following relation

Tm,k(λ) = (H − λ)−(m−k−1)D1(λ)(K − λ)−k

= (H − λ)−(m−k−1)EλD1(λ0)Fλ(K − λ)−k

= Em−k−1
λ (H − λ0)−(m−k−1)EλD1(λ0)Fλ(K − λ0)−kF k

λ

= Em−k
λ (H − λ0)−(m−k−1)D1(λ0)(K − λ0)−kF k+1

λ

= Em−k
λ Tm,k(λ0)F k+1

λ .

By assumption, Tm,k(λ0) ∈ Sp,∞, and hence we conclude that Tm,k(λ) ∈ Sp,∞
for k = 0, 1, . . . ,m− 1 and λ ∈ ρ(H) ∩ ρ(K). This together with (2.3) implies
that

(H − λ)−m − (K − λ)−m =
m−1∑

k=0

Tm,k(λ) ∈ Sp,∞(H)

for all λ ∈ ρ(H) ∩ ρ(K). �

The following lemma will be used in Sect. 4.2 to show that certain resol-
vent power differences are in some class Sp,∞.

Lemma 2.3. Let H and K be linear operators in H, let K be an auxiliary
Hilbert space and assume that, for some λ0 ∈ ρ(H) ∩ ρ(K), there exist opera-
tors B ∈ B(K,H) and C ∈ B(H,K) such that

(H − λ0)−1 − (K − λ0)−1 = BC. (2.9)
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Let a > 0 and b1, b2 ≥ 0 be such that a ≤ b1 + b2 and set b := b1 + b2 − a.
Moreover, let r ∈ N and assume that

(K − λ0)−kB ∈ S 1
ak+b1

,∞,

C(K − λ0)−k ∈ S 1
ak+b2

,∞,
k = 0, 1, . . . , r − 1. (2.10)

Then

(H − λ)−l − (K − λ)−l ∈ S 1
al+b ,∞ (2.11)

for all λ ∈ ρ(H) ∩ ρ(K) and all l = 1, 2, . . . , r.

Proof. We prove the statement by induction with respect to l. Using the fac-
torization in (2.9), the assumptions in (2.10) with k = 0 and Lemma 2.1 (i) we
obtain

(H − λ0)−1 − (K − λ0)−1 = BC ∈ S 1
b1

,∞ · S 1
b2

,∞ = S 1
b1+b2

,∞ = S 1
a+b ,∞.

Now Lemma 2.2 with m = 1 implies that

(H − λ)−1 − (K − λ)−1 ∈ S 1
a+b ,∞

for all λ ∈ ρ(H) ∩ ρ(K), i.e. (2.11) is true for l = 1.
For the induction step fix m ∈ N, 2 ≤ m ≤ r and assume that (2.11) is

satisfied for all l = 1, 2, . . . ,m − 1. For k = 0, 1, . . . ,m − 1 let Tm,k be as in
(2.2), define

Dj(λ0) := (H − λ0)−j − (K − λ0)−j , j ∈ N0,

and write

Tm,k(λ0) = (H − λ0)−(m−k−1)BC(K − λ0)−k

= Dm−k−1(λ0)BC(K − λ0)−k

+(K − λ0)−(m−k−1)BC(K − λ0)−k. (2.12)

Note that D0(λ0) = 0. By assumption (2.10) we have

B ∈ S 1
b1

,∞, C(K − λ0)−k ∈ S 1
ak+b2

,∞,

(K − λ0)−(m−k−1)B ∈ S 1
a(m−k−1)+b1

,∞,

for k = 0, 1, . . . ,m− 1. By the induction assumption we also have

Dm−k−1(λ0) ∈ S 1
a(m−k−1)+b ,∞

for k = 0, 1, . . . ,m− 1, and and hence we obtain with Lemma 2.1 (i) that the
first summand in (2.12) is in

S 1
a(m−k−1)+b ,∞ · S 1

b1
,∞ · S 1

ak+b2
,∞ = S 1

am+2b ,∞ ⊂ S 1
am+b ,∞,

where we used that b ≥ 0. The second summand in (2.12) is in

S 1
a(m−k−1)+b1

,∞ · S 1
ak+b2

,∞ = S 1
am+b ,∞.

Hence Tm,k(λ0) ∈ S 1
am+b ,∞ for all k = 0, 1, . . . ,m−1. Now Lemma 2.2 implies

the validity of (2.11) for l = m. �
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2.2. Quasi Boundary Triples and Their Weyl Functions

The concept of quasi boundary triples and Weyl functions is a generaliza-
tion of the notion of (ordinary) boundary triples and Weyl functions from
[20,26,48,57], which is a very convenient tool in extension theory of sym-
metric operators. Quasi boundary triples are particularly useful when dealing
with elliptic boundary value problems from an operator and extension theo-
retic point of view. In this subsection we provide some general facts on quasi
boundary triples, which can be found in [8] and [9].

Throughout this subsection let (H, (·, ·)H) be a Hilbert space and let A
be a densely defined closed symmetric operator in H.

Definition 2.4. A triple {G,Γ0,Γ1} is called a quasi boundary triple for A∗ if
(G, (·, ·)G) is a Hilbert space and for some linear operator T ⊂ A∗ with T = A∗

the following holds:

(i) Γ0,Γ1 : domT → G are linear mappings and ran
(
Γ0
Γ1

)
is dense in G × G;

(ii) A0 := T � ker Γ0 is a self-adjoint operator in H;
(iii) for all f, g ∈ domT the abstract Green’s identity holds:

(Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G . (2.13)

The following simple example illustrates the notion of quasi boundary
triples for the Laplacian on a smooth bounded domain, see [8,9], Section 3.1
and Proposition 3.1.

Example. Let Ω be a bounded domain with smooth boundary, A = −Δ with
domA = H2

0 (Ω), T = −Δ with domT = H2(Ω), let G = L2(∂Ω) and define
the boundary mappings as

Γ0f = ∂νf |∂Ω, Γ1f = f |∂Ω, f ∈ domT ;

where ∂ν stands for the normal derivative with normal vector pointing out-
wards. It can be shown that the closure of T coincides with the adjoint operator
A∗ = −Δ,domA∗ = {f ∈ L2(Ω) : Δf ∈ L2(Ω)}, and that the properties of
(i)–(iii) in Definition 2.4 hold. Hence {L2(∂Ω),Γ0,Γ1} is a quasi boundary
triple for A∗.

We remark that a quasi boundary triple for the adjoint A∗ of a densely
defined closed symmetric operator exists if and only if the deficiency indi-
ces n±(A) = dim ker(A∗ ∓ i) of A coincide. Moreover, if {G,Γ0,Γ1} is a quasi
boundary triple for A∗, then A coincides with T � (ker Γ0∩ker Γ1) and the oper-
ator A1 := T � ker Γ1 is symmetric in H. We also mention that a quasi bound-
ary triple with the additional property ran Γ0 = G is a generalized boundary
triple in the sense of [25,27]. In the special case that the deficiency indices
n±(A) of A are finite (and coincide) a quasi boundary triple is automatically
an ordinary boundary triple.

The following proposition contains a sufficient condition for a triple
{G,Γ0,Γ1} to be a quasi boundary triple, cf. [8, Theorem 2.3] and [9, The-
orem 2.3]. The result will be applied in Sects. 3.2 and 3.3.
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Proposition 2.5. Let H and G be Hilbert spaces and let T be a linear opera-
tor in H. Assume that Γ0,Γ1 : domT → G are linear mappings such that the
following conditions are satisfied:

(a) The range of
(
Γ0
Γ1

)
: domT → G × G is dense and ker Γ0 ∩ ker Γ1 is dense

in H.
(b) The identity (2.13) holds for all f, g ∈ domT .
(c) T � ker Γ0 is an extension of a self-adjoint operator A0.

Then A := T � ker Γ0 ∩ ker Γ1 is a densely defined closed symmetric operator
in H, and {G,Γ0,Γ1} is a quasi boundary triple for A∗ with A0 = T � ker Γ0.

Next we recall the definition of the γ-field and the Weyl function asso-
ciated with a quasi boundary triple {G,Γ0,Γ1} for A∗. Note first that the
decomposition

domT = domA0 +̇ ker(T − λ) = ker Γ0 +̇ ker(T − λ)

holds for all λ ∈ ρ(A0). Hence Γ0 � ker(T − λ) is invertible for all λ ∈ ρ(A0)
and maps ker(T − λ) bijectively onto ran Γ0.

Definition 2.6. Let {G,Γ0,Γ1} be a quasi boundary triple for T = A∗ and
A0 = T � ker Γ0. Then the (operator-valued) functions γ and M defined by

γ(λ) :=
(
Γ0 � ker(T − λ)

)−1 and M(λ) := Γ1γ(λ), λ ∈ ρ(A0),

are called the γ-field and the Weyl function corresponding to the quasi bound-
ary triple {G,Γ0,Γ1}.

The values of the Weyl function corresponding to the quasi boundary
triple {L2(∂Ω),Γ0,Γ1} in the example below Definition 2.4 are Neumann-to-
Dirichlet maps; cf. [8,9], Sect. 3.1 and Proposition 3.1.

The definitions of γ and M coincide with the definitions of the γ-field and
the Weyl function in the case that {G,Γ0,Γ1} is an ordinary boundary triple,
cf. [26]. Note that, for each λ ∈ ρ(A0), the operator γ(λ) maps ran Γ0 into H
and M(λ) maps ran Γ0 into ran Γ1. Furthermore, as an immediate consequence
of the definition of M(λ) we obtain

M(λ)Γ0fλ = Γ1fλ, fλ ∈ ker(T − λ), λ ∈ ρ(A0).

In the next proposition we collect some properties of the γ-field and the
Weyl function; all statements are proved in [8].

Proposition 2.7. Let {G,Γ0,Γ1} be a quasi boundary triple for T = A∗ with
A0 = T � ker Γ0, γ-field γ and Weyl function M . Then, for λ ∈ ρ(A0), the
following assertions hold.

(i) The mapping γ(λ) is a densely defined bounded operator from G into H
with dom γ(λ) = ran Γ0.

(ii) The adjoint of γ(λ) satisfies

γ(λ)∗ = Γ1(A0 − λ)−1 ∈ B(H,G).
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(iii) The values of the Weyl function M are densely defined (in general
unbounded) operators in G with domM(λ) = ran Γ0 and ranM(λ) ⊂
ran Γ1. Furthermore, M(λ) ⊂ M(λ)∗ holds.

(iv) If ran Γ0 = G, then M(λ) ∈ B(G).
(v) If A1 = T � ker Γ1 is a self-adjoint operator in H and λ ∈ ρ(A0) ∩ ρ(A1),

then M(λ) is a bijective mapping from ran Γ0 onto ran Γ1.

With the help of a quasi boundary triple and the associated Weyl func-
tion it is possible to describe the spectral properties of extensions of A, which
are restrictions of T ⊂ A∗. The extensions AΘ are defined with the help of an
abstract boundary condition by

AΘ := T � ker
(
Γ1 − ΘΓ0

)
= T � ker

(
Θ−1Γ1 − Γ0

)
, (2.14)

where Θ is a linear operator in G or a linear relation in G, i.e. a subspace of
G × G, cf. [8]. The sums and products are understood in the sense of linear
relations if Θ or Θ−1 is not a (single-valued) operator. However, for our pur-
poses the case that Θ−1 is a bounded linear operator on G is of particular
interest and linear relations will not be used in the following. The next state-
ment contains a variant of Krein’s formula in this case; see [8, Theorem 2.8
and Theorem 4.8], [9, Theorem 3.7 and Corollary 3.9] and [11, Theorem 3.13].

Theorem 2.8. Let {G,Γ0,Γ1} be a quasi boundary triple for T = A∗ with
A0 = T � ker Γ0, γ-field γ and Weyl function M . Furthermore, let B = B∗ =
Θ−1 ∈ B(G) and let

AΘ = T � ker
(
BΓ1 − Γ0

)
(2.15)

be the corresponding extension as in (2.14). Then, for λ ∈ ρ(A0), the following
assertions hold.

(i) λ ∈ σp(AΘ) if and only if ker(I−BM(λ)) 
= {0}. Moreover, in this case,
the multiplicity of the eigenvalue λ of AΘ is equal to dim ker(I−BM(λ)).

(ii) For all g ∈ ran(AΘ − λ) and λ /∈ σp(AΘ) we have

(AΘ − λ)−1g − (A0 − λ)−1g = γ(λ)
(
I −BM(λ)

)−1
Bγ(λ)∗g.

If, in addition, ran Γ0 = G and M(λ0) ∈ S∞(G) for some λ0 ∈ C\R, then the
operator AΘ in (2.15) is self-adjoint in H, Krein’s formula

(AΘ − λ)−1 − (A0 − λ)−1 = γ(λ)
(
I −BM(λ)

)−1
Bγ(λ)∗ (2.16)

holds for all λ ∈ ρ(AΘ) ∩ ρ(A0), and (I −BM(λ))−1 ∈ B(G).

2.3. Sobolev Spaces, Traces and Green’s Identities

Throughout this paper Sobolev spaces and certain interpolation spaces play an
important role. In this subsection we provide some necessary definitions and
basic properties. The reader is referred, e.g. to the monographs [2,51,59,62]
for more details.

Let Ω ⊂ R
n be an arbitrary bounded or unbounded domain with a com-

pact C∞-boundary ∂Ω. By Hs(Ω) and Hs(∂Ω), s ∈ R, we denote the standard
(L2-based) Sobolev spaces of order s of functions in Ω and ∂Ω, respectively.
The inner product and norm on Hs are denoted by (·, ·)s and ‖ · ‖s, for s = 0
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we simply write (·, ·) and ‖·‖, respectively. In order to avoid possible confusion,
sometimes also the space is used as an index, e.g. (·, ·)L2(Ω) and (·, ·)L2(∂Ω). The
Sobolev spaces of order k ∈ N0 of L∞-functions on Ω and ∂Ω are denoted by
W k,∞(Ω) and W k,∞(∂Ω), respectively. The following well-known implications
will be used later:

f ∈ Hk(Ω), g ∈ W k,∞(Ω) =⇒ fg ∈ Hk(Ω), k ∈ N0;

h ∈ H1(∂Ω), k ∈ W 1,∞(∂Ω) =⇒ hk ∈ H1(∂Ω).
(2.17)

For a function f on Ω we denote by f |∂Ω and ∂νf |∂Ω the trace and the
trace of the normal derivative (with normal vector pointing outwards), respec-
tively. For s > 3/2 the trace mapping

Hs(Ω) � f �→ {
f |∂Ω, ∂νf |∂Ω

} ∈ Hs−1/2(∂Ω) ×Hs−3/2(∂Ω) (2.18)

is the continuous extension of the trace mapping defined on C∞-functions.
Recall that for s > 3/2 the mapping (2.18) is surjective onto Hs−1/2(∂Ω) ×
Hs−3/2(∂Ω).

Besides the Sobolev spaces Hs(Ω) the spaces

Hs
Δ(Ω) :=

{
f ∈ Hs(Ω): Δf ∈ L2(Ω)

}
, s ≥ 0,

equipped with the inner product (·, ·)s + (Δ · ,Δ ·) and corresponding norm
will be useful. Observe that for s ≥ 2 the spaces Hs

Δ(Ω) and Hs(Ω) coincide.
We also note that Hs

Δ(Ω), s ∈ (0, 2), can be viewed as an interpolation space
between H2(Ω) and H0

Δ(Ω), where the latter space coincides with the maximal
domain of the Laplacian in L2(Ω). By [59] the trace mapping can be extended
to a continuous mapping

Hs
Δ(Ω) � f �→ {

f |∂Ω, ∂νf |∂Ω

} ∈ Hs−1/2(∂Ω) ×Hs−3/2(∂Ω) (2.19)

for all s ∈ [0, 2), where each of the mappings

Hs
Δ(Ω) � f �→ f |∂Ω ∈ Hs−1/2(∂Ω),

Hs
Δ(Ω) � f �→ ∂νf |∂Ω ∈ Hs−3/2(∂Ω)

is surjective for s ∈ [0, 2). We also recall that the first and second Green’s
identities hold for all f, g ∈ H

3/2
Δ (Ω) and h ∈ H1(Ω):

(−Δf, h
)
L2(Ω)

=
(∇f,∇h)

L2(Ω;Cn)
− (

∂νf |∂Ω, h|∂Ω

)
L2(∂Ω)

(2.20)

and
(−Δf, g

)
L2(Ω)

− (
f,−Δg

)
L2(Ω)

=
(
f |∂Ω, ∂νg|∂Ω

)
L2(∂Ω)

− (
∂νf |∂Ω, g|∂Ω

)
L2(∂Ω)

, (2.21)

cf. [42,59] and, e.g. [11, Theorem 4.2].
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2.4. Some Local Sobolev Spaces

Let Σ be a compact connected C∞-hypersurface which separates the Euclidean
space R

n into a bounded (interior) domain Ωi and an unbounded (exterior)
domain Ωe. In particular, Σ = ∂Ωi = ∂Ωe. For s ≥ 0 we use the short notation

Hs(Rn\Σ) := Hs(Ωi) ⊕Hs(Ωe),

Hs
Δ(Rn\Σ) := Hs

Δ(Ωi) ⊕Hs
Δ(Ωe).

(2.22)

We denote by Hs
Σ(Ωi) with s ≥ 0 the subspace of L2(Ωi) which consists

of functions that belong to Hs in a neighbourhood of Σ = ∂Ωi, i.e.

Hs
Σ(Ωi) :=

{
f ∈ L2(Ωi) : ∃ domain Ω′ ⊂ Ωi such that

∂Ω′ ⊃ Σ and f � Ω′ ∈ Hs(Ω′)
}
.

The space Hs
Σ(Ωe) is defined in the same way with Ωi replaced by Ωe. The

local Sobolev spaces Hs
Σ(Rn) and Hs

Σ(Rn\Σ) in the next definition consist
of L2-functions which are Hs in a neighbourhood of Σ or in both one-sided
neighbourhoods of Σ, respectively.

Definition 2.9. Let Σ,Ωi,Ωe, and the spaces Hs
Σ(Ωi) and Hs

Σ(Ωe), s ≥ 0, be as
above. Then we define

Hs
Σ(Rn) :=

{
f ∈ L2(Rn) : ∃ domain Ω′ ⊂ R

n such that

Ω′ ⊃ Σ and f � Ω′ ∈ Hs(Ω′)
}
,

Hs
Σ(Rn\Σ) := Hs

Σ(Ωi) ⊕Hs
Σ(Ωe).

It follows from the above definition that Hs
Σ(Rn) � Hs

Σ(Rn\Σ) holds for
all s > 0.

For k ∈ N0 we denote by W k,∞
Σ (Ωi) the subspace of L∞(Ωi) which con-

sists of functions that belong to W k,∞ in a neighbourhood of Σ = ∂Ωi, i.e.

W k,∞
Σ (Ωi) :=

{
f ∈ L∞(Ωi) : ∃ domain Ω′ ⊂ Ωi such that

∂Ω′ ⊃ Σ and f � Ω′ ∈ W k,∞(Ω′)
}
.

The space W k,∞
Σ (Ωe) is defined in the same way with Ωi replaced by Ωe. In

analogy to Definition 2.9 we introduce the local Sobolev spaces W k,∞
Σ (Rn) and

W k,∞
Σ (Rn\Σ) of L∞-functions which belong to W k,∞ in a neighbourhood or

both one-sided neighbourhoods of Σ, respectively.

Definition 2.10. Let Σ,Ωi,Ωe, and the spaces W k,∞
Σ (Ωi) and W k,∞

Σ (Ωe), k ∈
N0, be as above. Then we define

W k,∞
Σ (Rn) :=

{
f ∈ L∞(Rn) : ∃ domain Ω′ ⊂ R

n such that

Ω′ ⊃ Σ and f � Ω′ ∈ W k,∞(Ω′)
}
,

W k,∞
Σ (Rn\Σ) := W k,∞

Σ (Ωi) ×W k,∞
Σ (Ωe).

Finally, we recall a well-known result about the Sp,∞ property of boun-
ded operators mapping into the Sobolev space Hq2(Σ), where q2 > 0 and
Σ = ∂Ωi = ∂Ωe is the (n − 1)-dimensional compact connected C∞-hypersur-
face from above, cf. [50] and [11, Lemma 4.6].
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Lemma 2.11. Let K be a Hilbert space, B ∈ B(K, L2(Σ)) and let q2 > q1 ≥ 0.
If ranB ⊂ Hq2(Σ), then B belongs to the class S n−1

q2−q1
,∞(K,Hq1(Σ)).

3. Self-Adjoint Schrödinger Operators with δ and
δ′-Interactions on Hypersurfaces

In this section we define the Schrödinger operators with δ and δ′-interactions on
hypersurfaces with the help of quasi boundary triple techniques. These defini-
tions coincide with the ones in the introduction and are compatible with those
for one-dimensional δ-point interactions from [3,4] and the definition of δ-inter-
actions on manifolds via quadratic forms; see, e.g. [18,35,39,41,58]. We also
determine the semi-bounded closed quadratic form which corresponds to the
Schrödinger operator with a δ′-interaction on a hypersurface, which answers a
question from [30] posed by P. Exner. As a byproduct of the quasi boundary
triple approach we obtain variants of Krein’s formula and the Birman–Schw-
inger principle. This section contains the complete proofs of Theorem A and
Theorem B from the introduction.

3.1. Notations and Preliminary Facts

Let Σ be a compact connected C∞-hypersurface which separates the Euclidean
space R

n, n ≥ 2, into a bounded (interior) domain Ωi and an unbounded (exte-
rior) domain Ωe with the common boundary ∂Ωi = ∂Ωe = Σ. Let

L = −Δ + V, (3.1)

where V is a real-valued potential from L∞(Rn). The restrictions of L to the
interior and exterior domains will be denoted, respectively, by

Li = L � Ωi and Le = L � Ωe.

For a function f ∈ L2(Rn) we write f = fi ⊕ fe, where fi = f � Ωi and
fe = f � Ωe. Let us denote by (·, ·), (·, ·)i, (·, ·)e and (·, ·)Σ the inner products
in the Hilbert spaces L2(Rn), L2(Ωi), L2(Ωe) and L2(Σ), respectively. When
it is clear from the context, we denote the inner products in the Hilbert
spaces L2(Rn; Cn), L2(Ωi; Cn), and L2(Ωe; Cn) of vector-valued functions also
by (·, ·), (·, ·)i and (·, ·)e, respectively.

The minimal operators associated with the differential expressions Li and
Le are defined by

Aifi = Lifi, domAi = H2
0 (Ωi),

Aefe = Lefe, domAe = H2
0 (Ωe).

The operators Ai and Ae are densely defined closed symmetric operators with
infinite deficiency indices in L2(Ωi) and L2(Ωe), respectively. Hence their direct
sum

Ai,e = Ai ⊕Ae, domAi,e = H2
0 (Ωi) ⊕H2

0 (Ωe), (3.2)
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is a densely defined closed symmetric operator with infinite deficiency indi-
ces in the space L2(Rn) = L2(Ωi) ⊕ L2(Ωe). Furthermore, we introduce the
operators

Tifi = Lifi, domTi = H
3/2
Δ (Ωi),

Tefe = Lefe, domTe = H
3/2
Δ (Ωe),

and their direct sum

Ti,e = Ti ⊕ Te, domTi,e = H
3/2
Δ (Rn\Σ),

where the notation in (2.22) is used. It can be shown that A∗
i = T i, A

∗
e = T e,

and hence A∗
i,e = T i,e. Next we define the usual self-adjoint Dirichlet and

Neumann realizations of the differential expressions Li and Le in L2(Ωi) and
L2(Ωe), respectively:

AD,ifi = Lifi, domAD,i =
{
fi ∈ H2(Ωi) : fi|Σ = 0

}
,

AD,efe = Lefe, domAD,e =
{
fe ∈ H2(Ωe) : fe|Σ = 0

}
,

AN,ifi = Lifi, domAN,i =
{
fi ∈ H2(Ωi) : ∂νifi|Σ = 0

}
,

AN,efe = Lefe, domAN,e =
{
fe ∈ H2(Ωe) : ∂νefe|Σ = 0

}
,

and their direct sums
AD,i,e = AD,i ⊕AD,e,

domAD,i,e =
{
f ∈ H2(Rn\Σ) : fi|Σ = fe|Σ = 0

}
,

(3.3)

and
AN,i,e = AN,i ⊕AN,e,

domAN,i,e =
{
f ∈ H2(Rn\Σ) : ∂νifi|Σ = ∂νefe|Σ = 0

}
,

(3.4)

which are self-adjoint operators in L2(Rn). Finally, we denote the usual self-
adjoint (free) realization of L in L2(Rn) by

Afreef = Lf, domAfree = H2(Rn). (3.5)

In the next proposition we define quasi boundary triples for A∗
i and A∗

e ,
and recall some properties of the associated γ-fields and Weyl functions; see
[8, Proposition 4.6] and [11, Theorem 4.2]. For brevity we discuss the interior
case j = i and the exterior case j = e simultaneously.

Proposition 3.1. Let Ai, Ae, Ti, Te, AD,i, AD,e, AN,i and AN,e be as above. Then
the following statements hold for j = i and j = e.

(i) The triple Πj = {L2(Σ),Γ0,j ,Γ1,j}, where

Γ0,jfj = ∂νj
fj |Σ, Γ1,jfj = fj |Σ, fj ∈ domTj = H

3/2
Δ (Ωj),

is a quasi boundary triple for A∗
j . The restrictions of Tj to the kernels of

the boundary mappings are the Neumann and Dirichlet operators:

Tj � ker Γ0,j = AN,j , Tj � ker Γ1,j = AD,j ;

the ranges of the boundary mappings are

ran Γ0,j = L2(Σ) and ran Γ1,j = H1(Σ).
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(ii) For λ ∈ ρ(AN,j) and ϕ ∈ L2(Σ) the boundary value problem

(Lj − λ)fj = 0, ∂νj
fj |Σ = ϕ, (3.6)

has the unique solution γj(λ)ϕ ∈ H
3/2
Δ (Ωj), where γj is the γ-field asso-

ciated with Πj. Moreover, γj(λ) is bounded from L2(Σ) into L2(Ωj).
(iii) For λ ∈ ρ(AN,j) the Weyl function Mj associated with Πj is given by

Mj(λ)ϕ = fj |Σ, ϕ ∈ L2(Σ),

where fj = γj(λ)ϕ is the solution of (3.6). The operators Mj(λ) are
bounded from L2(Σ) to H1(Σ) and compact in L2(Σ). If, in addition,
λ ∈ ρ(AD,j), then Mj(λ) is a bijective map from L2(Σ) onto H1(Σ).

The operators Mi(λ) and Me(λ) in Proposition 3.1 (iii) are the
Neumann-to-Dirichlet maps associated with the differential expressions Li −λ
and Le − λ, respectively.

3.2. Schrödinger Operators with δ-Interactions on Hypersurfaces:
Self-Adjointness, Krein’s Formula and H2-Regularity

In this section we make use of quasi boundary triples to define and study the
Schrödinger operator Aδ,α associated with the formal differential expression
Lδ,α = −Δ + V − α〈δΣ, · 〉 δΣ in (1.1). It is convenient to use the symmetric
extension

Ã := Afree ∩AD,i,e = L �
{
f ∈ H2(Rn) : fi|Σ = fe|Σ = 0

}
(3.7)

of the orthogonal sum Ai,e in (3.2) as the underlying symmetric operator for
the quasi boundary triple. Furthermore,

T̃ := Ti,e �
{
fi ⊕ fe ∈ H

3/2
Δ (Rn\Σ): fi|Σ = fe|Σ

}
(3.8)

acts as the operator on whose domain boundary mappings are defined in the
next proposition. The method of intermediate extensions is inspired by the
general considerations for ordinary boundary triples in [24, Section 4]. We
remark that the quasi boundary triple and Weyl function below appear also
implicitly in [5] and [66, Section 4] in a different context.

Proposition 3.2. Let the operators Ã, T̃ , AD,i,e, AN,i,e and Afree be as in (3.7),
(3.8), (3.3), (3.4) and (3.5), respectively, and let Mi and Me be the Weyl func-
tions from Proposition 3.1. Then the following statements hold.

(i) The triple Π̃ = {L2(Σ), Γ̃0, Γ̃1}, where

Γ̃0f = ∂νefe|Σ + ∂νifi|Σ, Γ̃1f = f |Σ, f = fi ⊕ fe ∈ dom T̃ ,

is a quasi boundary triple for Ã∗. The restrictions of T̃ to the kernels of
the boundary mappings are

T̃ � ker Γ̃0 = Afree and T̃ � ker Γ̃1 = AD,i,e,

and the ranges of the boundary mappings are

ran Γ̃0 = L2(Σ) and ran Γ̃1 = H1(Σ). (3.9)
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(ii) For λ ∈ ρ(Afree) and ϕ ∈ L2(Σ) the transmission problem

(L − λ)f = 0, fe|Σ = fi|Σ, ∂νefe|Σ + ∂νifi|Σ = ϕ, (3.10)

has the unique solution γ̃(λ)ϕ ∈ H
3/2
Δ (Rn\Σ), where γ̃ is the γ-field asso-

ciated with Π̃. Moreover, γ̃(λ) is bounded from L2(Σ) to L2(Rn).
(iii) For λ ∈ ρ(Afree) the values M̃(λ) of the Weyl function associated with

Π̃ are bounded operators from L2(Σ) to H1(Σ) and compact operators in
L2(Σ). If, in addition, λ ∈ ρ(AD,i,e), then M̃(λ) is a bijective map from
L2(Σ) onto H1(Σ). Moreover, the identity

M̃(λ) =
(
Mi(λ)−1 +Me(λ)−1

)−1 (3.11)

holds for all λ ∈ ρ(Afree) ∩ ρ(AD,i,e) ∩ ρ(AN,i,e).

Proof. (i) First note that the boundary mappings Γ̃0, Γ̃1 are well defined
because of the properties of the trace mappings (2.19). We show that the
triple Π̃ satisfies the conditions (a), (b) and (c) in Proposition 2.5. For condi-
tion (a), let ϕ ∈ H1/2(Σ) and ψ ∈ H3/2(Σ) be arbitrary. By (2.18) there exist
fi ∈ H2(Ωi) and fe ∈ H2(Ωe) such that

∂νifi|Σ = ϕ, fi|Σ = ψ, ∂νefe|Σ = 0, fe|Σ = ψ.

Since H2(Rn\Σ) ⊂ H
3/2
Δ (Rn\Σ), we have f := fi ⊕ fe ∈ dom T̃ and Γ̃0f =

ϕ, Γ̃1f = ψ. Hence

H1/2(Σ) ×H3/2(Σ) ⊂ ran
(

Γ̃0

Γ̃1

)
,

which implies that the first item in (a) of Proposition 2.5 is satisfied; the second
item is clear. Next let f = fi ⊕ fe and g = gi ⊕ ge be two arbitrary functions
in dom T̃ . From Green’s identity (2.21) we obtain the following two equalities:

(Tifi, gi)i − (fi, Tigi)i =
(
fi|Σ, ∂νigi|Σ

)
Σ

− (
∂νifi|Σ, gi|Σ

)
Σ
,

(Tefe, ge)e − (fe, Tege)e =
(
fe|Σ, ∂νege|Σ

)
Σ

− (
∂νefe|Σ, ge|Σ

)
Σ
.

Since the functions f and g in dom T̃ satisfy the boundary conditions

fi|Σ = fe|Σ = f |Σ and gi|Σ = ge|Σ = g|Σ,
we have
(
T̃ f, g

) − (
f, T̃ g

)
= (Tifi, gi)i − (fi, Tigi)i + (Tefe, ge)e − (fe, Tege)e
=

(
f |Σ, ∂νigi|Σ + ∂νege|Σ

)
Σ

− (
∂νifi|Σ + ∂νefe|Σ, g|Σ

)
Σ
,

which shows that condition (b) of Proposition 2.5 is fulfilled. Since the restric-
tion T̃ � ker Γ̃0 contains the self-adjoint operator Afree, also condition (c) is
satisfied. Hence we can apply Proposition 2.5, which implies that

T̃ � (ker Γ̃0 ∩ ker Γ̃1)
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is a densely defined closed symmetric operator in L2(Rn), that the triple Π̃ =
{L2(Σ), Γ̃0, Γ̃1} is a quasi boundary triple for its adjoint and that

Afree = T̃ � ker Γ̃0.

Note that the operator T̃ � ker Γ̃1 is symmetric by Green’s identity and con-
tains the self-adjoint operator AD,i,e. Therefore these operators also coincide.
Hence we get

T̃ � (ker Γ̃0 ∩ ker Γ̃1) =
(
T̃ � ker Γ̃0

) ∩ (
T̃ � ker Γ̃1

)
= Afree ∩AD,i,e = Ã.

Since, for j = i and j = e, the mapping fj �→ fj |Σ is surjective
from H

3/2
Δ (Ωj) onto H1(Σ) and the mapping fj �→ ∂νjfj |Σ is surjective

from H
3/2
Δ (Ωj) onto L2(Σ), it follows easily that ran Γ̃1 = H1(Σ) and that

ran Γ̃0 ⊂ L2(Σ). In order to see that Γ̃0 maps surjectively onto L2(Σ), let us
fix an arbitrary χ ∈ C∞

0 (Rn) such that χ ≡ 1 on an open neighbourhood of Ωi.
Let SL be the single-layer potential associated with the hypersurface Σ and the
differential expression −Δ + 1; see, e.g. [62, Chapter 6] for the definition and
properties of single-layer potentials. By [62, Theorem 6.11, Theorem 6.12 (i)],
for an arbitrary ϕ ∈ L2(Σ), the function f := χSLϕ belongs to dom T̃ and
satisfies the condition

∂νefe|Σ + ∂νifi|Σ = ϕ,

hence Γ̃0f = ϕ, and thus ran Γ̃0 = L2(Σ).
(ii) For λ ∈ ρ(Afree) the γ-field γ̃(λ) associated with the quasi boundary

triple Π̃ maps ran Γ̃0 = L2(Σ) onto ker(T̃ − λ) by Definition 2.6 and Proposi-
tion 2.7 (i). Hence f = fi ⊕ fe := γ̃(λ)ϕ satisfies

(L − λ)f = 0, f ∈ H3/2(Rn\Σ) and fi|Σ = fe|Σ.
Furthermore,

ϕ = Γ̃0γ̃(λ)ϕ = Γ̃0f = ∂νefe|Σ + ∂νifi|Σ
and hence f = γ̃(λ)ϕ is the unique solution of the problem (3.10).

(iii) Definition 2.6, Proposition 2.7 (iv) and (v) and (3.9) imply that M̃(λ)
is a bounded operator from L2(Σ) into H1(Σ) for λ ∈ ρ(Afree) and that it is
bijective for λ ∈ ρ(Afree) ∩ ρ(AD,i,e). The compactness of M̃(λ) in L2(Σ) is a
consequence of the compactness of the embedding of H1(Σ) into L2(Σ); see,
e.g. [71, Theorem 7.10].

In order to prove the identity (3.11), let λ ∈ ρ(Afree)∩ρ(AD,i,e)∩ρ(AN,i,e).
For such λ the operator M̃(λ) is invertible, and the same holds true for Mi(λ)
and Me(λ); cf. Proposition 3.1. If M̃(λ)ϕ = ψ for some ϕ ∈ L2(Σ) and ψ ∈
H1(Σ), then there exists an f = fi ⊕ fe ∈ ker(T̃ − λ) such that

Γ̃0f = ϕ and Γ̃1f = ψ.
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As fi ∈ ker(Ti − λ) and fe ∈ ker(Te − λ), we have

Γ0,ifi = Mi(λ)−1Γ1,ifi = Mi(λ)−1ψ,

Γ0,efe = Me(λ)−1Γ1,efe = Me(λ)−1ψ,

and hence

M̃(λ)−1ψ = ϕ = ∂νifi|Σ + ∂νefe|Σ = Γ0,ifi + Γ0,efe

= Mi(λ)−1ψ +Me(λ)−1ψ.

Since this is true for arbitrary ψ ∈ H1(Σ), relation (3.11) follows. �

Remark 3.3. Assume for simplicity that the potential V in the differential
expression L in (3.1) is identically equal to zero. In this case the γ-field γ̃

and the Weyl function M̃ in Proposition 3.2 are, roughly speaking, exten-
sions of the acoustic single-layer potential for the Helmholtz equation. In fact,
if Gλ, λ ∈ C\R, is the integral kernel of the resolvent of Afree, then for all
ϕ ∈ C∞(Σ) we have

(
γ̃(λ)ϕ

)
(x) =

∫

Σ

Gλ(x, y)ϕ(y)dσy, x ∈ R
n\Σ,

and
(
M̃(λ)ϕ

)
(x) =

∫

Σ

Gλ(x, y)ϕ(y)dσy, x ∈ Σ,

where σy is the natural Lebesgue measure on Σ. For more details we refer the
reader to [62, Chapter 6]; see also [21,22].

We repeat the definition of a Schrödinger operator with δ-potential from
the introduction and relate it to the quasi boundary triple Π̃.

Definition 3.4. For a real-valued function α ∈ L∞(Σ) the Schrödinger operator
with δ-potential on the hypersurface Σ and strength α is defined as follows:

Aδ,α := T̃ � ker(αΓ̃1 − Γ̃0),

which is equivalent to
Aδ,αf := −Δf + V f,

domAδ,α :=

{

f ∈ H
3/2
Δ (Rn\Σ) :

fi|Σ = fe|Σ = f |Σ
αf |Σ = ∂νefe|Σ + ∂νifi|Σ

}

.
(3.12)

The definition of Aδ,α is compatible with the definition of a point δ-inter-
action in the one-dimensional case [3, Section I.3], [4] and the definitions of
the operators with δ-potentials on hypersurfaces given in [6,67] and in [18];
see also Proposition 3.7. Note also that the domain of Aδ,α is contained in
H1(Rn); cf. Proposition 3.7. For the relation between the operator Aδ,α and
the other operators studied in this section see Fig. 1.

The following theorem contains a proof of self-adjointness of the operator
Aδ,α and provides a factorization for the resolvent difference of Aδ,α and Afree
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Figure 1. This figure shows how the operator Aδ,α is related
to the other operators studied in this section. The operators
Afree, Aδ,α and AD,i,e are self-adjoint

via Krein’s formula; cf. [18, Lemma 2.3 (iii)]. Item (iii) in Theorem 3.5 can
be viewed as a variant of the Birman–Schwinger principle; it coincides with
the one in [18]. The first item of Theorem 3.5 is part of Theorem A in the
introduction.

Theorem 3.5. Let Aδ,α be as above and let Afree be the self-adjoint operator
defined in (3.5). Let γ̃ and M̃ be the γ-field and the Weyl function associ-
ated with the quasi boundary triple Π̃ from Proposition 3.2. Then the following
statements hold.

(i) The operator Aδ,α is self-adjoint in the Hilbert space L2(Rn).
(ii) For all λ ∈ ρ(Aδ,α) ∩ ρ(Afree) the following Krein formula holds:

(Aδ,α − λ)−1 − (Afree − λ)−1 = γ̃(λ)
(
I − αM̃(λ)

)−1
α γ̃(λ)∗,

where (I − αM̃(λ))−1 ∈ B(L2(Σ)).
(iii) For all λ ∈ R\σ(Afree) we have

λ ∈ σp(Aδ,α) ⇐⇒ 0 ∈ σp

(
I − αM̃(λ)

)

and dim ker(Aδ,α − λ) = dim ker(I − αM̃(λ)).

Proof. Under our assumptions on the function α the operator of multiplication
with α is bounded and self-adjoint in the Hilbert space L2(Σ). The values of
the Weyl function M̃ are compact operators in L2(Σ); see Proposition 3.2 (iii).
Now the assertions (i)–(iii) follow from Theorem 2.8. �

The next theorem gives assumptions on α, which ensure that the domain
of the self-adjoint operator Aδ,α has H2-regularity in R

n\Σ. This theorem is
the first part of Theorem B in the introduction. Recall that W 1,∞(Σ) is the
Sobolev space of order one of L∞ functions on Σ; cf. Sect. 2.3.

Theorem 3.6. Let Aδ,α be the self-adjoint Schrödinger operator in Defini-
tion 3.4 and assume, in addition, that the function α : Σ → R belongs to
W 1,∞(Σ). Then domAδ,α is contained in H2(Rn\Σ).
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Proof. For any function f ∈ domAδ,α we have f ∈ dom T̃ ⊂ H
3/2
Δ (Rn\Σ).

Then by Proposition 3.2 (i)

Γ̃1f ∈ H1(Σ).

The definition of the operator Aδ,α, the assumptions on the smoothness of α
and the property (2.17) imply that

Γ̃0f = αΓ̃1f ∈ H1(Σ). (3.13)

Let us fix λ ∈ C\R. By the standard decomposition

dom T̃ = domAfree � ker(T̃ − λ) (3.14)

the function f ∈ domAδ,α can be represented in the form f = ffree +fλ, where
ffree ∈ domAfree and fλ ∈ ker(T̃ − λ). It is clear that

ffree ∈ H2(Rn) ⊂ H2(Rn\Σ).

Relation (3.13) and Afree = T̃ � ker Γ̃0 yield

Γ̃0fλ = Γ̃0f ∈ H1(Σ) ⊂ H1/2(Σ). (3.15)

The properties of the trace map in (2.18) show that Γ̃0 maps the space dom T̃ ∩
H2(Rn\Σ) onto H1/2(Σ), and hence (3.14) implies that Γ̃0 maps

ker(T̃ − λ) ∩H2(Rn\Σ)

bijectively onto H1/2(Σ). This observation and (3.15) show fλ ∈ H2(Rn\Σ),
and therefore f = ffree + fλ ∈ H2(Rn\Σ). �

It follows from the proof that for Theorem 3.6 to hold it is sufficient that
the multiplication by α maps H1(Σ)-functions into H1/2(Σ).

A common method to define self-adjoint Schrödinger operators with
δ-interactions on hypersurfaces makes use of semi-bounded closed sesquilin-
ear forms. For this consider the sesquilinear form

aδ,α[f, g] =
(∇f,∇g) +

(
V f, g

) − (
αf |Σ, g|Σ

)
Σ
, f, g ∈ H1(Rn). (3.16)

As it is shown in [18], for a real-valued α ∈ L∞(Σ) and a real-valued V ∈
L∞(Rn), the form aδ,α is semi-bounded, closed and symmetric. The first repre-
sentation theorem—see [56, Theorem VI.2.1] or [64, Theorem VIII.15]—yields
that a unique self-adjoint operator Aδ,α in L2(Rn) corresponds to the form
aδ,α in the sense that

(Aδ,αf, g) = aδ,α[f, g] for all f ∈ dom Aδ,α and g ∈ dom aδ,α = H1(Rn).

In the next proposition we show that our approach leads to the same operator.

Proposition 3.7. The self-adjoint Schrödinger operator Aδ,α in Definition 3.4
and the self-adjoint operator Aδ,α corresponding to the sesquilinear form
in (3.16) coincide.
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Proof. First we show the inclusion domAδ,α ⊂ dom aδ,α. For this let f =
fi ⊕ fe ∈ domAδ,α. According to (3.12) we have, in particular,

fi ∈ H3/2(Ωi) ⊂ H1(Ωi), fe ∈ H3/2(Ωe) ⊂ H1(Ωe), and fi|Σ = fe|Σ.
Making use of [2, Theorems 5.24 and 5.29] a standard extension argument
implies that f ∈ H1(Rn) and hence domAδ,α ⊂ dom aδ,α.

Next let f = fi⊕fe ∈ domAδ,α and g = gi⊕ge ∈ dom aδ,α. Then aδ,α[f, g]
is well defined. By the first Green’s identity (2.20) we have

(∇fi,∇gi)i − (∂νifi|Σ, gi|Σ)Σ = (−Δfi, gi)i,
(∇fe,∇ge)e − (∂νefe|Σ, ge|Σ)Σ = (−Δfe, ge)e.

Using this and the relation αf |Σ = ∂νefe|Σ + ∂νifi|Σ we obtain

aδ,α[f, g] = (∇f,∇g) + (V f, g) − (
αf |Σ, g|Σ

)
Σ

= (∇fi,∇gi)i + (∇fe,∇ge)e + (V f, g) − (
∂νifi|Σ, gi|Σ

)
Σ

− (
∂νefe|Σ, ge|Σ

)
Σ

= (−Δfi, gi)i + (−Δfe, ge)e + (V f, g) =
(
(−Δ + V )f, g

)
.

Now the first representation theorem (see [56, Theorem VI.2.1]) implies that
f ∈ dom Aδ,α and Aδ,αf = −Δf+V f ; thus Aδ,α ⊂ Aδ,α. Since both operators
Aδ,α and Aδ,α are self-adjoint, we conclude that Aδ,α = Aδ,α. �

3.3. Schrödinger Operators with δ′-Interactions on Hypersurfaces:
Self-Adjointness, Krein’s Formula and H2-Regularity

In this section we make use of quasi boundary triples to define and study the
Schrödinger operator Aδ′,β associated with the formal differential expression
Lδ,α = −Δ + V − β〈δ′

Σ, · 〉 δ′
Σ in (1.1). The methodology and presentation is

very much the same as in the previous section. We mention that to the best
of our knowledge a systematic treatment of δ′-potentials on hypersurfaces is
not contained elsewhere; see the list of open problems in [30].

In analogy to (3.7) and (3.8) we define the symmetric extension

Â := Afree ∩AN,i,e = L �
{
f ∈ H2(Rn) : ∂νifi|Σ = ∂νefe|Σ = 0

}
(3.17)

of the orthogonal sum Ai,e, defined in (3.2), which will serve as the underlying
symmetric operator for the quasi boundary triple in the next proposition, and
the operator

T̂ := Ti,e �
{
fi ⊕ fe ∈ H

3/2
Δ (Rn\Σ): ∂νefe|Σ + ∂νifi|Σ = 0

}
. (3.18)

We remark that the quasi boundary triple and Weyl function below appear
also implicitly in [66, Section 4] in a different context.

Proposition 3.8. Let the operators Â, T̂ , AD,i,e, AN,i,e and Afree be as
in (3.17), (3.18), (3.3), (3.4) and (3.5), respectively, and let Mi and Me be
the Weyl functions from Proposition 3.1. Then the following statements hold.

(i) The triple Π̂ = {L2(Σ), Γ̂0, Γ̂1}, where

Γ̂0f = ∂νefe|Σ, Γ̂1f = fe|Σ − fi|Σ, f = fi ⊕ fe ∈ dom T̂ ,
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is a quasi boundary triple for Â∗. The restrictions of T̂ to the kernels of
the boundary mappings are

T̂ � ker Γ̂0 = AN,i,e and T̂ � ker Γ̂1 = Afree,

and the ranges of the boundary mappings are

ran Γ̂0 = L2(Σ) and ran Γ̂1 = H1(Σ).

(ii) For λ ∈ ρ(AN,i,e) and ϕ ∈ L2(Σ) the problem

(L − λ)f = 0, ∂νefe|Σ = −∂νifi|Σ = ϕ,

has the unique solution γ̂(λ)ϕ ∈ H
3/2
Δ (Rn\Σ), where γ̂ is the γ-field asso-

ciated with Π̂. Moreover, γ̂(λ) is bounded from L2(Σ) to L2(Rn).
(iii) For λ ∈ ρ(AN,i,e) the values M̂(λ) of the Weyl function associated with

Π̂ are bounded operators from L2(Σ) to H1(Σ) and compact operators in
L2(Σ). If, in addition, λ ∈ ρ(Afree), then M̂(λ) is a bijective map from
L2(Σ) onto H1(Σ). Moreover, the identity

M̂(λ) = Mi(λ) +Me(λ) (3.19)

holds for all λ ∈ ρ(AN,i,e).

Proof. (i) One can see that Π̂ is a quasi boundary triple for Â∗ in a similar
way as in the proof of Proposition 3.2 (i). Basically, the same argumentation
as before yields that T̂ � ker Γ̂0 = AN,i,e, T̂ � ker Γ̂1 = Afree and also that
ran Γ̂0 = L2(Σ), ran Γ̂1 ⊂ H1(Σ). Further we show surjectivity of Γ̂1 onto
H1(Σ). Fix a function χ ∈ C∞

0 (Rn) as in the proof of Proposition 3.2, i.e.
such that χ ≡ 1 on an open neighbourhood of Ωi. Let DL be the double-layer
potential associated with the hypersurface Σ and the differential expression
−Δ + 1; see, e.g. [62, Section 6] for the discussion of double-layer potentials.
By [62, Theorem 6.11, Theorem 6.12 (ii)] for an arbitrary ϕ ∈ H1(Σ) the
function f := χDLϕ belongs to dom T̂ and satisfies the condition

fe|Σ − fi|Σ = ϕ,

hence Γ̂1f = ϕ, and thus ran Γ̂1 = H1(Σ).
(ii)–(iii) The properties of the γ-field γ̂ and the Weyl function M̂ follow

from Proposition 2.7 in the same way as in the proof of Proposition 3.2 (ii)–
(iii). We only verify the identity (3.19). For this let λ ∈ ρ(AN,i,e), so that the
operators Mi(λ),Me(λ) and M̂(λ) all exist; cf. Proposition 3.1. If M̂(λ)ϕ = ψ

for some ϕ ∈ L2(Σ) and ψ ∈ H1(Σ), then there exists f = fi ⊕fe ∈ ker(T̂ −λ)
such that

Γ̂0f = ϕ and Γ̂1f = ψ.

As fi ∈ ker(Ti − λ) and fe ∈ ker(Te − λ), we have

Γ1,ifi = Mi(λ)Γ0,ifi = −Mi(λ)ϕ,

Γ1,efe = Me(λ)Γ0,efe = Me(λ)ϕ,
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and hence

M̂(λ)ϕ = fe|Σ − fi|Σ = Me(λ)ϕ+Mi(λ)ϕ.

Since this is true for arbitrary ϕ ∈ L2(Σ), relation (3.19) follows. �

Remark 3.9. Assume for simplicity that the potential V in the differential
expression L in (3.1) is identically equal to zero. Note that the problem in
Proposition 3.8 (ii) is decoupled into an interior and an exterior problem. Let,
as in Remark 3.3, Gλ be the integral kernel of the resolvent of Afree. Then, for
all ψ ∈ C∞(Σ),

(
γ̂(λ)ψ

)
(x) =

∫

Σ

[
∂νi(y)Gλ(x, y)

](
M̂(λ)ψ

)
(y)dσy, x ∈ R

n\Σ,

and
(
M̂(λ)−1ψ

)
(x) = −∂νi(x)

∫

Σ

[
∂νi(y)Gλ(x, y)

]
ψ(y)dσy, x ∈ Σ,

where ∂νi(x) and ∂νi(y) are the normal derivatives with respect to the first and
second arguments with normals pointing outwards of Ωi, and σy is the natural
Lebesgue measure on Σ. Note that the operator γ̂(λ) is, roughly speaking, an
extension of the acoustic double-layer potential for the Helmholtz equation
multiplied with M̂(λ) and −M̂(λ)−1 coincides with the hypersingular opera-
tor; see, e.g. [62, Chapter 6] and [21,22]. The representation of M̂(λ)−1, given
above, appears also in [66] in a slightly different context.

We repeat the definition of the Schrödinger operator with δ′-potential
from the introduction and relate it to the quasi boundary triple Π̂.

Definition 3.10. For a real-valued function β such that 1/β ∈ L∞(Σ) the
Schrödinger operator with δ′-potential on the hypersurface Σ and strength β
is defined as follows:

Aδ′,β = T̂ � ker(Γ̂1 − βΓ̂0),

which is equivalent to
Aδ′,βf := −Δf + V f,

domAδ′,β :=

{

f ∈ H
3/2
Δ (Rn\Σ) :

∂νe
fe|Σ = −∂νifi|Σ

β∂νefe|Σ = fe|Σ − fi|Σ

}

.
(3.20)

The definition of Aδ′,β is compatible with the definition of a point
δ′-interaction in the one-dimensional case [3, Section I.4], [4] and the defi-
nition of the operator with δ′-potentials on spheres given in [6,68]. Note that,
in contrast to the domain of Aδ,α, the domain of Aδ′,β is not contained in
H1(Rn). For the relation between the operator Aδ′,β and the other operators
studied in this section see Fig. 2.

The next theorem is the counterpart of Theorem 3.5 and can be proved in
the same way. Theorem 3.11 shows the self-adjointness of Aδ′,β and provides a
factorization for the resolvent difference of Aδ′,β and AN,i,e via Krein’s formula
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Figure 2. This figure shows how the operator Aδ′,β is related
to the other operators studied in this section. The operators
AN,i,e, Aδ′,β and Afree are self-adjoint

and a variant of the Birman–Schwinger principle. The first item of the next
theorem is part of Theorem A in the introduction.

Theorem 3.11. Let Aδ′,β be as above and let AN,i,e be the self-adjoint operator
defined in (3.4). Let γ̂ and M̂ be the γ-field and the Weyl function associ-
ated with the quasi boundary triple Π̂ from Proposition 3.8. Then the following
statements hold.

(i) The operator Aδ′,β is self-adjoint in the Hilbert space L2(Rn).
(ii) For all λ ∈ ρ(Aδ′,β) ∩ ρ(AN,i,e) the following Krein formula holds:

(Aδ′,β − λ)−1 − (AN,i,e − λ)−1 = γ̂(λ)
(
I − β−1M̂(λ)

)−1
β−1 γ̂(λ)∗,

where (I − β−1M̂(λ))−1 ∈ B(L2(Σ)).
(iii) For all λ ∈ R\σ(AN,i,e) we have

λ ∈ σp(Aδ′,β) ⇐⇒ 0 ∈ σp

(
I − β−1M̂(λ)

)

and dim ker(Aδ′,β − λ) = dim ker(I − β−1M̂(λ)).

The next theorem gives assumptions on β which ensure that the domain
of the self-adjoint operator Aδ′,β has H2-regularity. This theorem is the second
part of Theorem B in the introduction.

Theorem 3.12. Let Aδ′,β be the self-adjoint Schrödinger operator in Defini-
tion 3.10 and assume, in addition, that the function β : Σ → R is such that
1/β ∈ W 1,∞(Σ). Then domAδ′,β is contained in H2(Rn\Σ).

Proof. The proof proceeds as the proof of Theorem 3.6 with Aδ,α, Afree, T̃ , Γ̃0,

Γ̃1 and α replaced by Aδ′,β , AN,i,e, T̂ , Γ̂0, Γ̂1 and β−1, respectively. Instead of
the decomposition (3.14) one has to use the decomposition

dom T̂ = domAN,i,e � ker(T̂ − λ), λ ∈ C\R.

�
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3.4. Semi-Boundedness and Point Spectra

In this section we show that the self-adjoint operators Aδ,α and Aδ′,β are lower
semi-bounded, and that in the case V ≡ 0 their negative spectra are finite. We
recall some preparatory facts on semi-bounded quadratic forms first.

Definition 3.13. For a (not necessarily closed or semi-bounded) quadratic form
q in a Hilbert space H we define the number of negative squares κ−(q) by

κ−(q) := sup
{
dimF :F linear subspace of dom q

such that q[f ] < 0 for all f ∈ F\{0}}.
Assume that A is a (not necessarily semi-bounded) self-adjoint operator

in a Hilbert space H with the corresponding spectral measure EA(·). Define
the possibly non-closed quadratic form sA by

sA[f ] := (Af, f)H, dom sA := domA.

If, in addition, A is semi-bounded, then by [56, Theorem VI.1.27] the form sA

is closable, and we denote its closure by sA. According to the spectral theorem
for self-adjoint operators and [15, 10.2 Theorem 3]

dim ranEA(−∞, 0) = κ−(sA) = κ−(sA). (3.21)

In particular, if κ−(sA) is finite, then the self-adjoint operator A has finitely
many negative eigenvalues with finite multiplicities.

In the case V ≡ 0 we write −Δδ,α,−Δδ′,β and −Δfree instead of Aδ,α, Aδ′,β
and Afree. Now we are ready to formulate and prove the main results of this
section. The next theorem is part of Theorem A in the introduction. We men-
tion that finiteness of the negative spectrum in the case of δ-potentials on
hypersurfaces was also shown in [18] by other methods.

Theorem 3.14. Let α, β : Σ → R be such that α, 1/β ∈ L∞(Σ) and let the self-
adjoint operators −Δδ,α and −Δδ′,β be as above. Then the following statements
hold.

(i) σess(−Δδ,α) = σess(−Δδ′,β) = [0,∞).
(ii) The self-adjoint operators −Δδ,α and −Δδ′,β have finitely many negative

eigenvalues with finite multiplicities.

Proof. (i) According to Theorem 4.3 in Sect. 4.2 below the resolvent difference
of the self-adjoint operators −Δδ,α and −Δfree is compact; thus

σess(−Δδ,α) = σess(−Δfree) = [0,∞).

Analogously, according to Theorem 4.5 below the resolvent difference of the
self-adjoint operators −Δδ′,β and −Δfree is also compact. Hence

σess(−Δδ′,β) = σess(−Δfree) = [0,∞).

(ii) Let us introduce the (in general non-closed) quadratic forms

s−Δδ,α
[f ] :=

(−Δδ,αf, f
)
, dom(s−Δδ,α

) := dom(−Δδ,α),

s−Δδ′,β [f ] :=
(−Δδ′,βf, f

)
, dom(s−Δδ′,β ) := dom(−Δδ′,β).



J. Behrndt et al. Ann. Henri Poincaré

Applying the first Green’s identity (2.20) to these expressions and taking the
definitions (3.12), (3.20) of the domains of the operators −Δδ,α,−Δδ′,β into
account we obtain

s−Δδ,α
[f ] =

(−Δfi, fi
)
i
+

(−Δfe, fe
)
e

=
(∇fi,∇fi

)
i
− (

∂νifi|Σ, fi|Σ
)
Σ

+
(∇fe,∇fe

)
e
− (

∂νefe|Σ, fe|Σ
)
Σ

=
(∇f,∇f) − (

αf |Σ, f |Σ
)
Σ

and

s−Δδ′,β [f ] =
(−Δfi, fi

)
i
+

(−Δfe, fe
)
e

=
(∇fi,∇fi

)
i
−(
∂νifi|Σ, fi|Σ

)
Σ

+
(∇fe,∇fe

)
e
− (

∂νefe|Σ, fe|Σ
)
Σ

= (∇f,∇f)+
(
β−1(fe|Σ−fi|Σ), fi|Σ

)
Σ

−(
β−1(fe|Σ−fi|Σ), fe|Σ

)
Σ

=
(∇f,∇f) − (

β−1(fe|Σ − fi|Σ), fe|Σ − fi|Σ
)
Σ
.

For a bounded function σ : Σ → R define the quadratic form qσ

qσ[f ] :=
(∇f,∇f) − (

σfi|Σ, fi|Σ
)
Σ

− (
σfe|Σ, fe|Σ

)
Σ
,

dom qσ := H1(Rn\Σ).

It follows from [12, Theorem 6.9] (cf. the proof of Proposition 3.15 below) that
the form qσ is closed and semi-bounded, and the self-adjoint operator corre-
sponding to qσ has finitely many negative eigenvalues with finite multiplicities.
Thus, by (3.21), we have κ−(qσ) < ∞. It can easily be checked that

dom(s−Δδ,α
) ⊂ dom(q|α|/2) and ∀ f ∈ dom(s−Δδ,α

) : s−Δδ,α
[f ] ≥ q|α|/2[f ].

Using the inequality |a−b|2 ≤ 2(|a|2+ |b|2) for complex numbers a, b we obtain

dom(s−Δδ′,β ) ⊂ dom(q2/|β|) and ∀ f ∈ dom(s−Δδ′,β ) : s−Δδ′,β [f ] ≥ q2/|β|[f ].

These observations yield that

κ−(s−Δδ,α
) ≤ κ−(q|α|/2) < ∞ and κ−(s−Δδ′,β ) ≤ κ−(q2/|β|) < ∞.

From this and (3.21) it follows that the negative spectra of −Δδ,α and −Δδ′,β
are finite. �

In the following proposition the (closed) sesquilinear form aδ′,β which
induces the self-adjoint operator −Δδ′,β is determined. This was posed as an
open problem in [30, 7.2]. Note that, by the first representation theorem, aδ′,β
is the closure of the form

s−Δδ′,β [f, g] = (−Δδ′,βf, g), f, g ∈ dom(−Δδ′,β),

defined in the proof of Theorem 3.14. For completeness we mention that Propo-
sition 3.15 extends naturally to the Schrödinger operator Aδ′,β with non-trivial
V ∈ L∞(Rn) and the corresponding quadratic form.
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Proposition 3.15. The sesquilinear form

aδ′,β [f, g] :=
(∇f,∇g) − (

β−1(fe|Σ − fi|Σ), ge|Σ − gi|Σ
)
Σ

defined for f, g ∈ H1(Rn\Σ) is symmetric, closed and semi-bounded from
below. The self-adjoint operator corresponding to aδ′,β is −Δδ′,β, i.e.

(−Δδ′,βf, g) = aδ′,β [f, g]

holds for all f ∈ dom(−Δδ′,β) and g ∈ H1(Rn\Σ).

Proof. Since β is a real-valued function, it follows that the form aδ′,β is sym-
metric. In order to show that it is closed and semi-bounded, we consider the
forms

a[f, g] := (∇f,∇g) and a′[f, g] := −(
β−1(fe|Σ − fi|Σ), ge|Σ − gi|Σ

)
Σ

on H1(Rn\Σ), so that aδ′,β = a + a′ holds. Note that a is closed and non-
negative. Let t ∈ (1

2 , 1) be fixed. Since the trace map is continuous, there exists
ct > 0 such that ‖fi|Σ‖Ht−1/2(Σ) ≤ ct‖fi‖Ht(Ωi) is valid for all fi ∈ Ht(Ωi).
Hence it follows from Ehrling’s lemma that for every ε > 0 there exists a
constant Ci(ε) such that

‖fi|Σ‖Σ ≤ ct‖fi‖Ht(Ωi) ≤ ε‖fi‖H1(Ωi) + Ci(ε)‖fi‖L2(Ωi) (3.22)

holds for all fi ∈ H1(Ωi). We decompose the exterior domain in the form Ωe =
Ωe,1 ∪ Ωe,2, where Ωe,1 is bounded, Ωe,2 is unbounded, and the C∞-boundary
of Ωe,1 is the disjoint union of Σ and ∂Ωe,2. The restriction of a function fe
to Ωe,1 is denoted by fe,1. Then again the continuity of the trace map and
Ehrling’s lemma show that for every ε > 0 there exists a constant Ce(ε) such
that

‖fe|Σ‖Σ = ‖fe,1|Σ‖Σ ≤ ‖fe,1|∂Ωe,1‖L2(∂Ωe,1)

≤ ε‖fe,1‖H1(Ωe,1) + Ce(ε)‖fe,1‖L2(Ωe,1)

≤ ε‖fe‖H1(Ωe) + Ce(ε)‖fe‖L2(Ωe) (3.23)

holds for all fe ∈ H1(Ωe). The estimates (3.22) and (3.23) yield that the form
a′ is bounded with respect to a with form bound < 1, and hence aδ′,β = a+a′ is
closed and semi-bounded by [56, Theorem VI.1.33]. The remaining statement
follows from [56, Theorem VI.2.1] and similar arguments as in the proof of
Proposition 3.7. �

Items (i) and (ii) in the next theorem are part of Theorem A in the
introduction.

Theorem 3.16. Let α, β : Σ → R be such that α, 1/β ∈ L∞(Σ) and let
V ∈ L∞(Rn) be a real-valued potential. Moreover, let the self-adjoint oper-
ators Aδ,α, Aδ′,β, and Afree be as in (3.12), (3.20) and (3.5), respectively. Then
the following statements hold.

(i) σess(Aδ,α) = σess(Aδ′,β) = σess(Afree).
(ii) Both self-adjoint operators Aδ,α and Aδ′,β are lower semi-bounded.
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Proof. (i) The equality of the essential spectra follows from the stability of
the essential spectrum under compact perturbations and Theorems 4.3 and
4.5 below.

(ii) By Theorem 3.14 (ii) the operators −Δδ,α and −Δδ′,β are bounded
from below. The operator of multiplication with the function V is bounded and
self-adjoint. Thus the operators Aδ,α and Aδ′,β are bounded from below. �

4. Resolvent Power Differences in Sp,∞-Classes, Existence and
Completeness of Wave Operators

In this section we compare the powers of the resolvents of the singularly per-
turbed self-adjoint Schrödinger operators Aδ,α and Aδ′,β with the powers of the
resolvents of the unperturbed Schrödinger operator Afree. This leads to singular
value estimates, which have a long tradition in the analysis of elliptic differen-
tial operators, cf. [12–14,49,55] and the recent contributions [10,11,52,53,61]
for more details. In this section we prove Theorem C and Theorem D from the
Introduction in a slightly stronger form.

4.1. Elliptic Regularity and Some Preliminary Sp,∞-Estimates

In this section we first provide a typical regularity result for the functions
(Afree − λ)−1f and (AN,i,e − λ)−1f if f and V satisfy some additional local
smoothness assumptions. This fact is then used to obtain estimates for the
singular values of certain compact operators arising in the representations of
the resolvent power differences of the self-adjoint operators Aδ,α, Aδ′,β , Afree

and AN,i,e. In the next lemma we make use of the local Sobolev spaces
W k,∞

Σ (Rn),W k,∞
Σ (Rn\Σ) and Hk

Σ(Rn),Hk
Σ(Rn\Σ) defined in Sect. 2.4.

Lemma 4.1. Let Afree and AN,i,e be the self-adjoint operators from (3.5) and
(3.4), respectively, and let m ∈ N0. Then the following assertions hold.

(i) If V ∈ Wm,∞
Σ (Rn), then, for all λ ∈ ρ(Afree) and k = 0, 1, . . . ,m,

f ∈ Hk
Σ(Rn) =⇒ (Afree − λ)−1f ∈ Hk+2

Σ (Rn).

(ii) If V ∈ Wm,∞
Σ (Rn\Σ), then, for all λ ∈ ρ(AN,i,e) and k = 0, 1, . . . ,m,

f ∈ Hk
Σ(Rn\Σ) =⇒ (AN,i,e − λ)−1f ∈ Hk+2

Σ (Rn\Σ).

Proof. We verify only assertion (i); the proof of (ii) is similar and left to the
reader. We proceed by induction with respect to k. For k = 0 the statement
is an immediate consequence of H0

Σ(Rn) = L2(Rn) and domAfree = H2(Rn).
Suppose now that the implication in (i) is true for some fixed k < m and let
f ∈ Hk+1

Σ (Rn). Then, in particular, f ∈ Hk
Σ(Rn) and hence

u := (Afree − λ)−1f ∈ Hk+2
Σ (Rn) ⊂ Hk+1

Σ (Rn)

by assumption. As k+ 1 ≤ m and V ∈ Wm,∞
Σ (Rn), it follows from (2.17) that

V u ∈ Hk+1
Σ (Rn). Therefore f − V u ∈ Hk+1

Σ (Rn), and since the function u
satisfies the differential equation

−Δu− λu = f − V u in R
n
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standard results on elliptic regularity yield u ∈ Hk+3
Σ (Rn); see, e.g. [62, Theo-

rem 4.18]. �

An application of the previous lemma yields the following proposition,
in which we provide certain preliminary Sp,∞-estimates that are useful in the
proofs of our main results in the next subsection.

Proposition 4.2. Let Afree and AN,i,e be the self-adjoint operators from (3.5)
and (3.4), respectively, and let γ̃ and γ̂ be the γ-fields from Propositions 3.2
and 3.8, respectively. Then for a fixed m ∈ N0 the following statements hold.

(i) If V ∈ W 2m,∞
Σ (Rn), then, for all λ, μ ∈ ρ(Afree) and k = 0, 1, . . . ,m,

(a) γ̃(μ)∗(Afree − λ)−k ∈ S n−1
2k+3/2 ,∞

(
L2(Rn), L2(Σ)

)
,

(b) γ̃(μ)∗(Afree − λ)−k ∈ S n−1
2k+1/2 ,∞

(
L2(Rn),H1(Σ)

)
,

(c) (Afree − λ)−kγ̃(μ) ∈ S n−1
2k+3/2 ,∞

(
L2(Σ), L2(Rn)

)
.

(ii) If V ∈ W 2m,∞
Σ (Rn\Σ), then, for all λ, μ ∈ ρ(AN,i,e) and k = 0, 1, . . . ,m,

(a) γ̂(μ)∗(AN,i,e − λ)−k ∈ S n−1
2k+3/2 ,∞

(
L2(Rn), L2(Σ)

)
,

(b) γ̂(μ)∗(AN,i,e − λ)−k ∈ S n−1
2k+1/2 ,∞

(
L2(Rn),H1(Σ)

)
,

(c) (AN,i,e − λ)−kγ̂(μ) ∈ S n−1
2k+3/2 ,∞

(
L2(Σ), L2(Rn)

)
.

Proof. We prove assertion (i); the proof of (ii) is analogous. As

ran(Afree − λ)−1 = domAfree = H2(Rn) ⊂ H2
Σ(Rn),

we conclude from Lemma 4.1 (i) that the inclusion

ran
(
(Afree − μ)−1(Afree − λ)−k

) ⊂ H2k+2
Σ (Rn)

holds for all k = 0, 1, . . . ,m. Moreover, since by Proposition 3.2 we have Afree =
T̃ � ker Γ̃0, Proposition 2.7 (ii) implies that

γ̃(μ)∗(Afree − λ)−k = Γ̃1(Afree − μ)−1(Afree − λ)−k

and hence

ran
(
γ̃(μ)∗(Afree − λ)−k

) ⊂ H2k+3/2(Σ) (4.1)

by the properties of the trace map Γ̃1, cf. (2.18). Now the estimates in (a) and
(b) follow from (4.1) and Lemma 2.11 with K = L2(Rn), q2 = 2k+ 3

2 and with
q1 = 0 for (a) and q1 = 1 for (b), respectively. The estimate in (c) follows from
(a) by taking the adjoint. �

4.2. Resolvent Power Differences for the Pairs {Aδ,α, Afree}, {Aδ′,β, Afree}
and {Aδ′,β, AN,i,e}

In the next theorem we prove Sp,∞-properties of resolvent power differences
for the self-adjoint operators Aδ,α and Afree. The theorem and its corollary are
parts of Theorems C and D in the introduction.
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Theorem 4.3. Let α ∈ L∞(Σ) be a real-valued function on Σ, and let Aδ,α

and Afree be the self-adjoint operators defined in (3.12) and (3.5), respectively.
Assume that V ∈ W 2m−2,∞

Σ (Rn) for some m ∈ N. Then

(Aδ,α − λ)−l − (Afree − λ)−l ∈ S n−1
2l+1 ,∞

(
L2(Rn)

)

for all l = 1, 2, . . . ,m and for all λ ∈ ρ(Aδ,α) ∩ ρ(Afree).

Proof. We prove the theorem by applying Lemma 2.3. Fix an arbitrary λ0 ∈
C\R, and let γ̃, M̃ be as in Proposition 3.2. By Theorem 3.5 the resolvent
difference of Aδ,α and Afree at the point λ0 can be written in the form

(Aδ,α − λ0)−1 − (Afree − λ0)−1 = γ̃(λ0)
(
I − αM̃(λ0)

)−1
αγ̃(λ0)∗,

where (I−αM̃(λ0))−1α ∈ B(L2(Σ)). Proposition 4.2 (i) (a) and (c) imply that
the assumptions in Lemma 2.3 are satisfied with

H = Aδ,α, K = Afree, B = γ̃(λ0), C =
(
I − αM̃(λ0)

)−1
αγ̃(λ0)∗,

a =
2

n− 1
, b1 = b2 =

3/2
n− 1

, r = m.

Since b = b1 + b2 − a = 1
n−1 , Lemma 2.3 implies the assertion of the theo-

rem. �

The previous theorem has a direct application in mathematical scattering
theory. Consider the pair {Aδ,α, Afree} of self-adjoint operators as a scattering
system; here Afree stands for the unperturbed operator and Aδ,α is singularly
perturbed by a δ-potential of strength α supported on the hypersurface Σ.
It is well known (see, e.g. [56, Theorem X.4.8]) that if, for some m ∈ N, the
difference of the mth powers of the resolvents of Aδ,α and Afree is a trace class
operator, i.e. if

(Aδ,α − λ0)−m − (Afree − λ0)−m ∈ S1

for some λ0 ∈ ρ(Aδ,α) ∩ ρ(Afree), then the corresponding wave operators

W±(Aδ,α, Afree) := s-lim
t→±∞ eitAδ,αe−itAfreePac(Afree)

exist and are complete, i.e. the strong limit exists everywhere and the ranges
coincide with the absolutely continuous subspace of the perturbed operator
Aδ,α. Here Pac(Afree) denotes the orthogonal projection onto the absolutely
continuous subspace of the unperturbed operator Afree. This implies, in par-
ticular, that the absolutely continuous parts of Aδ,α and Afree are unitarily
equivalent and that the absolutely continuous spectra coincide: σac(Aδ,α) =
σac(Afree), cf. [56, Theorem X.4.12, Remark X.4.13] and [65,72].

The next corollary shows that for sufficiently smooth potentials V the
wave operators of the scattering system {Aδ,α, Afree} exist in any space dimen-
sion.

Corollary 4.4. Let the assumptions be as in Theorem 4.3. If V ∈ W k,∞
Σ (Rn)

for some even k and k > n− 4, then the wave operators W±(Aδ,α, Afree) exist
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and are complete, and hence the absolutely continuous parts of Aδ,α and Afree

are unitarily equivalent.
In particular, if V = 0, then W±(Aδ,α, Afree) exist and are complete for

any n ≥ 2 and σac(Aδ,α) = [0,∞).

In the next theorem we prove Sp,∞-properties for resolvent power dif-
ferences of the self-adjoint operators Aδ′,β and Afree. The theorem and its
corollary are the second parts of Theorems C and D in the introduction. The
formulation given below is a bit stronger than the one in the introduction.

Theorem 4.5. Let β be a real-valued function on Σ such that 1/β ∈ L∞(Σ),
and let Aδ′,β and Afree be the self-adjoint operators defined in (3.20) and (3.5),
respectively. Assume that V ∈ W 2m−2,∞

Σ (Rn\Σ) for some m ∈ N. Then

(Aδ′,β − λ)−l − (Afree − λ)−l ∈ Sn−1
2l ,∞

(
L2(Rn)

)

for all l = 1, 2, . . . ,m and for all λ ∈ ρ(Aδ′,β) ∩ ρ(Afree).

Proof. First we apply Lemma 2.3 to the difference of the lth powers of the
resolvents of Afree and AN,i,e. Fix an arbitrary λ0 ∈ C\R and let γ̂ and M̂
be the γ-field and Weyl function associated with the quasi boundary triple in
Proposition 3.8. Since the operators Afree and AN,i,e are both self-adjoint, in
analogy to (2.16) we have

(Afree − λ0)−1 − (AN,i,e − λ0)−1 = −γ̂(λ0)M̂(λ0)−1γ̂(λ0)∗;

see [11, Corollary 3.11]. Furthermore, by Proposition 2.7 (v) and Proposi-
tion 3.8 (iii) the operator M̂(λ0) is bijective and closed as an operator from
L2(Σ) onto H1(Σ). Hence dom M̂(λ0)−1 = H1(Σ) and M̂(λ0)−1 is closed as
an operator from H1(Σ) into L2(Σ). Thus, we can conclude that M̂(λ0)−1 ∈
B(H1(Σ), L2(Σ)). Set

H := Afree, K := AN,i,e, B := −γ̂(λ0), C := M̂(λ0)−1γ̂(λ0)∗.

Then Proposition 4.2 (ii) (b) and (c) imply that the assumptions in Lemma 2.3
are satisfied with

a =
2

n− 1
, b1 =

3/2
n− 1

, b2 =
1/2
n− 1

, r = m.

Since b = b1 + b2 − a = 0, Lemma 2.3 implies that

(Afree − λ)−l − (AN,i,e − λ)−l ∈ Sn−1
2l ,∞

(
L2(Rn)

)
(4.2)

for all λ ∈ ρ(Afree)∩ρ(AN,i,e) and all l = 1, 2, . . . ,m. This observation together
with Theorem 4.8 shows that

(Aδ′,β − λ)−l − (Afree − λ)−l ∈ Sn−1
2l ,∞

(
L2(Rn)

)
(4.3)

for all l = 1, 2, . . . ,m and for all λ ∈ ρ(Aδ′,β) ∩ ρ(Afree) ∩ ρ(AN,i,e). As the
resolvent power difference in (4.3) is analytic in λ, it follows that (4.3) holds
also for those points λ ∈ ρ(Aδ′,β) ∩ ρ(Afree) which are isolated eigenvalues of
AN,i,e; note that we know already that the essential spectra of AN,i,e, Aδ′,β
and Afree coincide because the relations (4.2) and (4.3) are true at least for
non-real λ. �
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Remark 4.6. We note that in (4.2) it is shown that the difference of the mth
powers of the resolvents of Afree and AN,i,e belongs to the class Sn−1

2m ,∞ pro-

vided V ∈ W 2m−2,∞
Σ (Rn\Σ). This is a slight improvement of a result in [12].

For infinitely smooth V the asymptotics of the singular values have been stud-
ied in [13,14] and [49].

The following corollary is the counterpart of Corollary 4.4 for the scat-
tering system {Aδ′,β , Afree}.

Corollary 4.7. Let the assumptions be as in Theorem 4.5. If V ∈ W k,∞
Σ (Rn\Σ)

for some even k and k > n− 3, then the wave operators W±(Aδ′,β , Afree) exist
and are complete, and hence the absolutely continuous parts of Aδ′,β and Afree

are unitarily equivalent.
In particular, if V = 0, then W±(Aδ′,β , Afree) exist and are complete for

any n ≥ 2 and σac(Aδ′,β) = [0,∞).

The next result on the Sp,∞-properties of the resolvent power differ-
ences of Aδ′,β and AN,i,e completes the proof of Theorem 4.5, but is also of
independent interest. We do not formulate the corresponding corollary for the
scattering system {Aδ′,β , AN,i,e}.

Theorem 4.8. Let β be a real-valued function on Σ such that 1/β ∈ L∞(Σ), and
let Aδ′,β and AN,i,e be the self-adjoint operators defined in (3.20) and (3.4),
respectively. Assume that V ∈ W 2m−2,∞

Σ (Rn\Σ) for some m ∈ N. Then

(Aδ′,β − λ)−l − (AN,i,e − λ)−l ∈ S n−1
2l+1 ,∞

(
L2(Rn)

)

for all l = 1, 2, . . . ,m and all λ ∈ ρ(Aδ′,β) ∩ ρ(AN,i,e).

Proof. As in the proofs of Theorems 4.3 and 4.5 fix λ0 ∈ C\R and let γ̂ and M̂
be the γ-field and Weyl function associated with the quasi boundary triple in
Proposition 3.8. By Theorem 3.11 the resolvent difference of Aδ′,β and AN,i,e

at the point λ0 can be written in the form

(Aδ′,β − λ0)−1 − (AN,i,e − λ0)−1 = γ̂(λ0)
(
I − β−1M̂(λ0)

)−1
β−1γ̂(λ0)∗,

where (I−β−1M̂(λ0))−1β−1 ∈ B(L2(Σ)). Proposition 4.2 (ii) (a) and (c) imply
that the assumptions in Lemma 2.3 are satisfied with

H = Aδ′,β , K = AN,i,e, B = γ̂(λ0), C =
(
I − β−1M̂(λ0)

)−1
β−1γ̂(λ0)∗,

a =
2

n− 1
, b1 = b2 =

3/2
n− 1

, r = m.

Since b = b1 + b2 − a = 1
n−1 , Lemma 2.3 implies the assertion of the theo-

rem. �



Schrödinger Operators with δ and δ′-Potentials

Acknowledgements

The authors gratefully acknowledge the hospitality and stimulating working
atmosphere at the Isaac Newton Institute for Mathematical Sciences (Cam-
bridge, UK). Moreover, they would like to thank Pavel Exner and Gerd Grubb
for helpful comments.

References

[1] Abels, H., Grubb, G., Wood, I.: Extension theory and Krein-type resolvent for-
mulae for nonsmooth boundary value problems. Preprint: arXiv:1008.3281

[2] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Pure and Applied Math-
ematics, vol. 140. Elsevier/Academic Press, Amsterdam (2003)

[3] Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H.: Solvable Models in
Quantum Mechanics. With an appendix by Pavel Exner. AMS Chelsea Publish-
ing (2005)

[4] Albeverio, S., Kurasov, P.: Singular Perturbations of Differential Operators.
Solvable Schrödinger Type Operators. Lond. Math. Soc. Lecture Note Series,
vol. 271. Cambridge University Press, Cambridge (1999)

[5] Amrein, W.O., Pearson, D.B.: M operators: a generalisation of Weyl–Titch-
marsh theory. J. Comput. Appl. Math. 171, 1–26 (2004)

[6] Antoine, J.-P., Gesztesy, F., Shabani, J.: Exactly solvable models of sphere inter-
actions in quantum mechanics. J. Phys. A 20, 3687–3712 (1987)

[7] Ashbaugh, M.S., Gesztesy, F., Mitrea, M., Teschl, G.: Spectral theory for
perturbed Krein Laplacians in nonsmooth domains. Adv. Math. 223, 1372–
1467 (2010)

[8] Behrndt, J., Langer, M.: Boundary value problems for elliptic partial differential
operators on bounded domains. J. Funct. Anal. 243, 536–565 (2007)

[9] Behrndt, J., Langer, M.: Elliptic operators, Dirichlet-to-Neumann maps and
quasi boundary triples. Lond. Math. Soc. Lecture Note Series 404, 121–160
(2012)

[10] Behrndt, J., Langer, M., Lobanov, I., Lotoreichik, V., Popov, I.Yu.: A remark on
Schatten–von Neumann properties of resolvent differences of generalized Robin
Laplacians on bounded domains. J. Math. Anal. Appl. 371, 750–758 (2010)

[11] Behrndt, J., Langer, M., Lotoreichik, V.: Spectral estimates for resolvent differ-
ences of self-adjoint elliptic operators. Preprint: arXiv:1012.4596

[12] Birman, M.Sh.: Perturbations of the continuous spectrum of a singular elliptic
operator by varying the boundary and the boundary conditions. Vestnik Lenin-
grad. Univ. 17, 22–55 (1962, in Russian); translated in: Am. Math. Soc. Transl.
225, 19–53 (2008)

[13] Birman, M.Sh., Solomjak, M.Z.: Asymptotic behavior of the spectrum of vari-
ational problems on solutions of elliptic equations. Sibirsk. Mat. Zh. 20, 3–22,
204 (1979, in Russian)

[14] Birman, M.Sh., Solomjak, M.Z.: Asymptotic behavior of the spectrum of varia-
tional problems on solutions of elliptic equations in unbounded domains. Funkt-
sional. Anal. i Prilozhen. 14, 27–35 (1980, in Russian); translated in: Funct.
Anal. Appl. 14, 267–274 (1981)



J. Behrndt et al. Ann. Henri Poincaré
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