181 research outputs found

    Relict silicate inclusions in extraterrestrial chromite and their use in the classification of fossil chondritic material

    Get PDF
    Chromite is the only common meteoritic mineral surviving long-term exposure on Earth, however, the present study of relict chromite from numerous Ordovician (470 Ma) fossil meteorites and micrometeorites from Sweden, reveals that when encapsulated in chromite, other minerals can survive for hundreds of millions of years maintaining their primary composition. The most common minerals identified, in the form of small (1.5 mu m) in chromite from the Ordovician fossil chondritic material plot within the L-chondrite field, which is in accordance with previous classifications. The concordance in classification together with the fact that inclusions are relatively common makes them an accurate and useful tool in the classification of extraterrestrial material that lacks matrix silicates, such as fossil meteorites and sediment-dispersed chromite grains originating primarily from decomposed micrometeorites but also from larger impacts. (C) 2008 Elsevier Ltd. All rights reserved

    First crystal-structure determination of chromites from an acapulcoite and ordinary chondrites

    Get PDF
    We report the first crystal structure determinations of chromites from an acapulcoite and from ordinary chondrites. Cell edges range from 8.3212 (3) to 8.3501 (1) \uc5, while the oxygen positional parameters are in the range 0.2624 (3) to 0.26298 (9). Their compositions show they are very close to the chromite end-member FeCr2O4 with limited Al and Mg content. Titanium oxide content exceeds 1%, whereas the amount of Fe3+ is negligible. Extraterrestrial chromite is readily distinguished from terrestrial analogues on the basis of cell edge and oxygen positional parameter. These distinctions will facilitate ongoing attempts to reconstruct the paleoflux of meteorites to Earth from resistant extraterrestrial spinel grains recovered from ancient sediments

    Cosmic-ray exposure ages of fossil micrometeorites from mid-Ordovician sediments at Lynna River, Russia

    Full text link
    We measured the He and Ne concentrations of 50 individual extraterrestrial chromite grains recovered from mid-Ordovician (lower Darriwilian) sediments from the Lynna River section near St. Petersburg, Russia. High concentrations of solar wind-like He and Ne found in most grains indicate that they were delivered to Earth as micrometeoritic dust, while their abundance, stratigraphic position and major element composition indicate an origin related to the L chondrite parent body (LCPB) break-up event, 470 Ma ago. Compared to sediment-dispersed extraterrestrial chromite (SEC) grains extracted from coeval sediments at other localities, the grains from Lynna River are both highly concentrated and well preserved. As in previous work, in most grains from Lynna River, high concentrations of solar wind-derived He and Ne impede a clear quantification of cosmic-ray produced He and Ne. However, we have found several SEC grains poor in solar wind Ne, showing a resolvable contribution of cosmogenic 21Ne. This makes it possible, for the first time, to determine robust cosmic-ray exposure (CRE) ages in these fossil micrometeorites, on the order of a few hundred-thousand years. These ages are similar to the CRE ages measured in chromite grains from cm-sized fossil meteorites recovered from coeval sediments in Sweden. As the CRE ages are shorter than the orbital decay time of grains of this size by Poynting-Robertson drag, this suggests that the grains were delivered to Earth through direct injection into an orbital resonance. We demonstrate how CRE ages of fossil micrometeorites can be used, in principle, to determine sedimentation rates, and to correlate the sediments at Lynna River with the fossil meteorite-bearing sediment layers in Sweden.Comment: 25 pages, 4 figures, 2 table

    From shelf to abyss : record of the Paleocene/Eocene-boundary in the Eastern Alps (Austria)

    Get PDF
    In the Eastern Alps (Austria) several marine successions, which were deposited ranging from shallow shelf to bathyal slope and abyssal basin, provide detailed records across the Paleocene/Eocene-boundary. These records indicate a two-step event starting with a prominent sea-level fall and followed by climatic changes. At the northern and southern shelves that fringed the Penninic Basin, the shallow-water sedimentary records are incomplete across the Paleocene/Eocene transition. Erosional surfaces indicate a major sea-level drop, which was terminated by an early Eocene (Ypresian) transgression within calcareous nannoplankton Zone NP12. As a proxy for the onset of this sea-level fall a strong increase in the terrestrially-derived input into the Penninic Basin can be used. The abyssal Anthering section from the northern part of the basin comprises a complete succession from NP9 to the upper part of NP10 (upper Thanetian-lower Ypresian). The thickest turbidite beds of this 250 m thick succession appear just before the carbon isotope event in the upper part of zone NP9, which is used to recognize the Paleocene/Eocene-boundary. A major lithological change from a sandstone-dominated facies to a claystone-dominated facies occurs at the onset of the carbon isotope event. This might be the result of a climatic change, resulting in increased intra-annual humidity gradients and increased physical erosion of the hinterland. Consequently, mainly fine-grained suspended material would have come into the basin and caused an increase in hemipelagic sedimentation rates by about a factor of 6. A similar value has been calculated for the bathyal Untersberg section, which was deposited on the southern slope of the basin, where an increased input of siliciclastic material is associated with a carbonate dissolution event during the carbon isotope event. At the southern shelf, a stratigraphic gap within the Gosau Group in the Krappfeld area (Carinthia) comprises the Maastrichtian and Paleocene. After a sea-level rise nummulitic marlstone and limestone were deposited in the lower part of zone NP12. Since the northern and southern shelves of the Penninic Basin belonged to different tectonic domains, with different potentials of crustal subsidence, the temporal similarity of sea-level changes on both shelves in the latest Paleocene and earliest Eocene suggests that these sea level fluctuations were mainly eustatic in origin

    The breakup of the L-chondrite parent body 466 Ma and its terrestrial effects – a search for a mid-Ordovician biodiversity event

    Get PDF
    About a third of all meteorites that fall on Earth today, the stony L-chondrites, originate from a major breakup event in the asteroid belt 466 Ma, in the early Darriwilian. This is the largest asteroid breakup in the past three billion years documented by K-Ar gas-retention ages of recently fallen meteorites. There has been a debate whether the breakup had any effects on Earthâs biota. Based mainly on brachiopod data from western Russia, some authors have argued for the existence of a major biodiversity âeventâ at approximately the time of the L-chondrite breakup. An analysis of the distribution of three fossil groups (conodonts, ostracods and trilobites) across the late Dapingian and early Darriwilian in three sections in southern Sweden shows no evidence of any biodiversity event. The only biotic changes outside a normal trend are those related to a sea-level fall following the arrival of large amounts of dust from the asteroid breakup. We conclude that the Great Ordovician Biodiversification Event represents a sequence of changes over about 20 Myr, coinciding with an asteroid shower from the breakup of the L-chondrite parent body

    Obituary Lennart Jeppsson 1940-2015

    Get PDF

    Maurits Lindström 1932-2009

    Get PDF

    Determining the impactor of the Ordovician Lockne crater : oxygen and neon isotopes in chromite versus sedimentary PGE signatures

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 306 (2011): 149-155, doi:10.1016/j.epsl.2011.04.028.Abundant chromite grains with L-chondritic composition in the resurge deposits of the Lockne impact crater (458 Myr old; dia. ~10 km) in Sweden have been inferred to represent relict fragments of an impactor from the break-up of the L-chondrite parent body at 470 Ma. This view has been challenged based on Ir/Cr and platinum group element (PGE) patterns of the same resurge deposits, and a reinterpretation of the origin of the chromite grains. An impactor of the non-magmatic iron meteorite type was proposed instead. Here we show that single-grain oxygen and noble-gas isotope analyses of the chromite grains from the resurge deposits further support an origin from an L-chondritic asteroid. We also present PGE analyses and Ir/Cr ratios for fossil L-chondritic meteorites found in mid-Ordovician marine limestone in Sweden. The L-chondritic origin has been confirmed by several independent methods, including major element and oxygen isotopic analyses of chromite. Although the meteorites show the same order-of-magnitude PGE and Cr concentrations as recent L chondrites, the elements have been redistributed to the extent that it is problematic to establish the original meteorite type from these proxies. Different PGE data processing approaches can lead to highly variable results, as also shown here for the Lockne resurge deposits. We conclude that the Lockne crater was formed by an L-chondritic impactor, and that considerable care must be taken when inferring projectile type from PGEs in sedimentary ejecta deposits.The WiscSIMS Lab is partially funded by NSF-EAR (0319230, 0516725, 0744079). The Robert A. Pritzker Center for Meteoritics and Polar Studies is supported by the Tawani Foundation
    • …
    corecore