14,065 research outputs found

    Can lay-led walking programmes increase physical activity in middle aged adults? : a randomised controlled trial

    Get PDF
    Study objective: To compare health walks, a community based lay-led walking scheme versus advice only on physical activity and cardiovascular health status in middle aged adults. Design: Randomised controlled trial with one year follow up. Physical activity was measured by questionnaire. Other measures included attitudes to exercise, body mass index, cholesterol, aerobic capacity, and blood pressure. Setting: Primary care and community. Participants: 260 men and women aged 40–70 years, taking less than 120 minutes of moderate intensity activity per week. Main results: Seventy three per cent of people completed the trial. Of these, the proportion increasing their activity above 120 minutes of moderate intensity activity per week was 22.6% in the advice only and 35.7% in the health walks group at 12 months (between group difference =13% (95% CI 0.003% to 25.9%) p=0.05). Intention to treat analysis, using the last known value for missing cases, demonstrated smaller differences between the groups (between group difference =6% (95% CI -5% to 16.4%)) with the trend in favour of health walks. There were improvements in the total time spent and number of occasions of moderate intensity activity, and aerobic capacity, but no statistically significant differences between the groups. Other cardiovascular risk factors remained unchanged. Conclusions: There were no significant between group differences in self reported physical activity at 12 month follow up when the analysis was by intention to treat. In people who completed the trial, health walks was more effective than giving advice only in increasing moderate intensity activity above 120 minutes per week

    Speech and language difficulties in children with and without a family history of dyslexia

    Get PDF
    Comorbidity between SLI and dyslexia is well documented. Researchers have variously argued that dyslexia is a separate disorder from SLI, or that children with dyslexia show a subset of the difficulties shown in SLI. This study examines these hypotheses by assessing whether family history of dyslexia and speech and language difficulties are separable risk factors for literacy difficulties. Forty-six children with a family risk of dyslexia (FRD) and 36 children receiving speech therapy (SLT) were compared to 128 typically developing children. A substantial number (41.3%) of the children with FRD had received SLT. The nature of their difficulties did not differ in severity or form from those shown by the other children in SLT. However, both SLT and FRD were independent risk factors in predicting reading difficulties both concurrently and 6 months later. It is argued that the results are best explained in terms of Pennington's (2006) multiple deficits model

    Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow

    Get PDF
    We investigate the dynamics of the two-dimensional periodic Kolmogorov flow of a viscoelastic fluid, described by the Oldroyd-B model, by means of direct numerical simulations. Above a critical Weissenberg number the flow displays a transition from stationary to randomly fluctuating states, via periodic ones. The increasing complexity of the flow in both time and space at progressively higher values of elasticity accompanies the establishment of mixing features. The peculiar dynamical behavior observed in the simulations is found to be related to the appearance of filamental propagating patterns, which develop even in the limit of very small inertial non-linearities, thanks to the feedback of elastic forces on the flow.Comment: 10 pages, 14 figure

    XMM-Newton and INTEGRAL analysis of the Supergiant Fast X-ray Transient IGR J17354-3255

    Get PDF
    We present the results of combined INTEGRAL and XMM-Newton observations of the supergiant fast X-ray transient (SFXT) IGR J17354−-3255. Three XMM-Newton observations of lengths 33.4 ks, 32.5 ks and 21.9 ks were undertaken, the first an initial pointing to identify the correct source in the field of view and the latter two performed around periastron. Simultaneous INTEGRAL observations across ∌66%\sim66\% of the orbital cycle were analysed but the source was neither detected by IBIS/ISGRI nor by JEM-X. The XMM-Newton light curves display a range of moderately bright X-ray activity but there are no particularly strong flares or outbursts in any of the three observations. We show that the spectral shape measured by XMM-Newton can be fitted by a consistent model throughout the observation, suggesting that the observed flux variations are driven by obscuration from a wind of varying density rather than changes in accretion mode. The simultaneous INTEGRAL data rule out simple extrapolation of the simple powerlaw model beyond the XMM-Newton energy range.Comment: 13 pages, 9 figures, This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society Published by Oxford University Pres

    Thermodiffusion in model nanofluids by molecular dynamics simulations

    Full text link
    In this work, a new algorithm is proposed to compute single particle (infinite dilution) thermodiffusion using Non-Equilibrium Molecular Dynamics simulations through the estimation of the thermophoretic force that applies on a solute particle. This scheme is shown to provide consistent results for simple Lennard-Jones fluids and for model nanofluids (spherical non-metallic nanoparticles + Lennard-Jones fluid) where it appears that thermodiffusion amplitude, as well as thermal conductivity, decrease with nanoparticles concentration. Then, in nanofluids in the liquid state, by changing the nature of the nanoparticle (size, mass and internal stiffness) and of the solvent (quality and viscosity) various trends are exhibited. In all cases the single particle thermodiffusion is positive, i.e. the nanoparticle tends to migrate toward the cold area. The single particle thermal diffusion 2 coefficient is shown to be independent of the size of the nanoparticle (diameter of 0.8 to 4 nm), whereas it increases with the quality of the solvent and is inversely proportional to the viscosity of the fluid. In addition, this coefficient is shown to be independent of the mass of the nanoparticle and to increase with the stiffness of the nanoparticle internal bonds. Besides, for these configurations, the mass diffusion coefficient behavior appears to be consistent with a Stokes-Einstein like law

    Two-dimensional elastic turbulence

    Get PDF
    We investigate the effect of polymer additives on a two-dimensional Kolmogorov flow at very low Reynolds numbers by direct numerical simulations of the Oldroyd-B viscoelastic model. We find that above the elastic instability threshold the flow develops the elastic turbulence regime recently observed in experiments. We observe that both the turbulent drag and the Lyapunov exponent increase with Weissenberg, indicating the presence of a disordered, turbulent-like mixing flow. The energy spectrum develops a power-law scaling range with an exponent close to the experimental and theoretical expectations

    Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses

    Get PDF
    The evolution of galaxy cluster counts is a powerful probe of several fundamental cosmological parameters. A number of recent studies using this probe have claimed tension with the cosmology preferred by the analysis of the Planck primary CMB data, in the sense that there are fewer clusters observed than predicted based on the primary CMB cosmology. One possible resolution to this problem is systematic errors in the absolute halo mass calibration in cluster studies, which is required to convert the standard theoretical prediction (the halo mass function) into counts as a function of the observable (e.g., X-ray luminosity, Sunyaev-Zel'dovich flux, optical richness). Here we propose an alternative strategy, which is to directly compare predicted and observed cluster counts as a function of the one-dimensional velocity dispersion of the cluster galaxies. We argue that the velocity dispersion of groups/clusters can be theoretically predicted as robustly as mass but, unlike mass, it can also be directly observed, thus circumventing the main systematic bias in traditional cluster counts studies. With the aid of the BAHAMAS suite of cosmological hydrodynamical simulations, we demonstrate the potential of the velocity dispersion counts for discriminating even similar Λ\LambdaCDM models. These predictions can be compared with the results from existing redshift surveys such as the highly-complete Galaxy And Mass Assembly (GAMA) survey, and upcoming wide-field spectroscopic surveys such as the Wide Area Vista Extragalactic Survey (WAVES) and the Dark Energy Survey Instrument (DESI).Comment: 15 pages, 13 figures. Accepted for publication in MNRAS. New section on cosmological forecasts adde

    Criminal sentencing by preferred numbers

    Get PDF
    Criminal sentencing is a complex cognitive activity often performed by the unaided mind under suboptimal conditions. As such, sentencers may not behave according to policy, guidelines and training. We analyzed the distribution of sentences meted out in one year in two different jurisdictions (i.e., England and Wales, and New South Wales, Australia). We reveal that sentencers prefer certain numbers when meting out sentence lengths (in custody and community service) and amounts (for fines/compensation). These ‘common doses’ accounted for over 90% of sentences in each jurisdiction. The size of these doses increased as sentences became more severe, and doses followed a logarithmic pattern. These findings are compatible with psychological research on preferred numbers and are reminiscent of Weber’s and Fechner’s laws. Our findings run contrary to arguments against efforts to reduce judicial discretion, and potentially undermine the notion of individualized justice, as well as raise questions about the (cost) effectiveness of sentencing

    New insights on accretion in Supergiant Fast X-ray Transients from XMM-Newton and INTEGRAL observations of IGR J17544−-2619

    Full text link
    XMM-Newton observations of the supergiant fast X-ray transient IGR ~J17544−-2619 are reported and placed in the context of an analysis of archival INTEGRAL/IBIS data that provides a refined estimate of the orbital period at 4.9272±\pm0.0004 days. A complete outburst history across the INTEGRAL mission is reported. Although the new XMM-Newton observations (each lasting ∌\sim15 ks) targeted the peak flux in the phase-folded hard X-ray light curve of IGR ~J17544−-2619, no bright outbursts were observed, the source spending the majority of the exposure at intermediate luminosities of the order of several 1033 ^{33}\,erg \,s−1^{-1} (0.5 − \,-\,10 \,keV) and displaying only low level flickering activity. For the final portion of the exposure, the luminosity of IGR ~J17544−-2619 dropped to ∌\sim4×\times1032 ^{32}\,erg \,s−1^{-1} (0.5 - 10 keV), comparable with the lowest luminosities ever detected from this source, despite the observations being taken near to periastron. We consider the possible orbital geometry of IGR ~J17544−-2619 and the implications for the nature of the mass transfer and accretion mechanisms for both IGR ~J17544−-2619 and the SFXT population. We conclude that accretion under the `quasi-spherical accretion' model provides a good description of the behaviour of IGR ~J17544−-2619, and suggest an additional mechanism for generating outbursts based upon the mass accumulation rate in the hot shell (atmosphere) that forms around the NS under the quasi-spherical formulation. Hence we hope to aid in explaining the varied outburst behaviours observed across the SFXT population with a consistent underlying physical model.Comment: 12 pages, 5 figures, accepted for publication in MNRA
    • 

    corecore