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ABSTRACT
The evolution of galaxy cluster counts is a powerful probe of several fundamental cosmolog-
ical parameters. A number of recent studies using this probe have claimed tension with the
cosmology preferred by the analysis of the Planck primary cosmic microwave background
(CMB) data, in the sense that there are fewer clusters observed than predicted based on the
primary CMB cosmology. One possible resolution to this problem is systematic errors in the
absolute halo mass calibration in cluster studies, which is required to convert the standard
theoretical prediction (the halo mass function) into counts as a function of the observable
(e.g. X-ray luminosity, Sunyaev–Zel’dovich flux, and optical richness). Here we propose an
alternative strategy, which is to directly compare predicted and observed cluster counts as
a function of the one-dimensional velocity dispersion of the cluster galaxies. We argue that
the velocity dispersion of groups/clusters can be theoretically predicted as robustly as mass
but, unlike mass, it can also be directly observed, thus circumventing the main systematic
bias in traditional cluster counts studies. With the aid of the BAHAMAS suite of cosmological
hydrodynamical simulations, we demonstrate the potential of the velocity dispersion counts
for discriminating even similar � cold dark matter models. These predictions can be compared
with the results from existing redshift surveys such as the highly complete Galaxy And Mass
Assembly survey, and upcoming wide-field spectroscopic surveys such as the Wide Area Vista
Extragalactic Survey and the Dark Energy Survey Instrument.

Key words: neutrinos – galaxies: clusters: general – galaxies: groups: general – galaxies: kine-
matics and dynamics – large-scale structure of Universe.

1 IN T RO D U C T I O N

The abundance of galaxy groups and clusters at a given redshift is
directly tied to cosmological parameters that control the growth rate
of structure, such as the total matter density (�m), the amplitude of
density fluctuations in the early Universe (σ 8), the spectral index
of fluctuations (ns), and the evolution of dark energy (for recent re-
views, see Voit 2005; Allen, Evrard & Mantz 2011). Consequently,
measurements of the evolution of the abundance of groups and
clusters can be used to constrain the values of these fundamental
cosmological parameters. Recent examples include Vikhlinin et al.
(2009) and Bohringer, Chon & Collins (2014) using X-ray emission
observed with ROSAT, Benson et al. (2013) and Planck Collabora-
tion XX (2014) using the Sunyaev–Zel’dovich (SZ) effect observed
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with the South Pole Telescope (SPT) and Planck, respectively, and
Rozo et al. (2010) using the optical maxBCG sample from the Sloan
Digital Sky Survey (SDSS). Upcoming X-ray (eROSITA), SZ (e.g.
SPT-3G, ACTpol), and optical (e.g. the Dark Energy Survey, the
Large Synoptic Survey Telescope, and Euclid) missions promise to
provide even richer data sets that will further enhance this field of
study.

In order to compare the observed abundances of groups and clus-
ters with theoretical predictions for a given cosmology, the relation
between the observable (e.g. X-ray luminosity, optical richness,
weak lensing signal, SZ flux, etc.) and the total mass, including its
evolution and scatter, is required to convert the standard theoreti-
cal prediction (i.e. the halo mass function, HMF) into a prediction
for the number counts as a function of the observable. [A sep-
arate important issue is that the predictions normally correspond
to the total mass in a dark-matter-only model, but the masses of
real groups and clusters can be modified significantly by baryonic
physics (e.g. Cui, Borgani & Murante 2014; Velliscig et al. 2014).]
One can attempt to determine this observable–mass relation either
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empirically or by using self-consistent cosmological hydrodynam-
ical simulations.

However, both methods have their shortcomings. The empirical
route is limited by non-negligible systematic errors in all current
methods of total mass estimation (e.g. Rozo et al. 2014) and can,
in any case, generally only be applied to relatively small (generally
low-z) samples where the data quality is sufficiently high to attempt
mass measurement. The basic problem for the simulation route
is that many observable quantities (such as the X-ray luminosity,
SZ flux, total stellar mass, etc.) cannot be robustly predicted due to
the sensitivity to uncertain ‘subgrid’ physics (Le Brun et al. 2014).

The issue of absolute mass calibration has been brought to the
forefront by the Planck number counts discrepancy (Planck Col-
laboration XX 2014). Specifically, the best-fitting � cold dark mat-
ter (�CDM) model based on analyses of the primary cosmic mi-
crowave background (CMB) data overpredicts the observed number
counts by a factor of several (Planck Collaboration XX 2014; Planck
Collaboration XXIV 2015, see also Bohringer et al. 2014). One
possible explanation for this discrepancy is the presence of a large
‘hydrostatic mass bias’, such that the adopted X-ray-based masses
underpredict the true mass by up to ∼50 per cent (e.g. von der
Linden et al. 2014). Alternatively, there may be remaining relevant
systematics in the Planck CMB data analysis (see e.g. Addison et al.
2016; Spergel, Flauger & Hložek 2015), or the discrepancy could
be signalling interesting new physics which suppresses the growth
of large-scale structure compared to that predicted by a �CDM
with parameters fixed (mainly) by the primary CMB at redshift z ∼
1100, such as free streaming by massive neutrinos (e.g. Battye &
Moss 2014; Beutler et al. 2014; Wyman et al. 2014). Clearly, before
we can arrive at the conclusion that there is interesting new physics
at play, we must rule out the ‘mass bias’ scenario.

One way to independently check the robustness of the claimed
discrepancy is to measure the abundance of groups/clusters as a
function of some other property that can be theoretically predicted
as robustly as mass. Fortunately, such a variable exists: the velocity
dispersion of orbiting satellite galaxies. The velocity dispersion of
the satellites is set by the depth of the potential well and, when in
equilibrium, can be expressed via the Jeans equation as

d[σ3D(r)2ρgal(r)]

dr
= −GMtot(r)ρgal(r)

r2
, (1)

where σ 3D(r) is the 3D velocity dispersion profile, ρgal(r) is the
density distribution of the tracer (satellite) population, and Mtot(r)
is the total mass profile. Provided the simulations have the correct
spatial distribution of tracers (which we discuss further below), they
ought to predict the velocity dispersion of satellites as robustly as
the mass distribution.

In practice, we do not need to solve the Jeans equations, be-
cause the simulations evolve the equations of gravity and hydro-
dynamics self-consistently, which is necessary given the non-linear
complexity of real clusters (e.g. mergers, substructure, aspheric-
ity, derivations from equilibrium), and we can directly compare the
predicted and observed velocity dispersions. In particular, in the
present study, we use the BAHAMAS suite of simulations, presented in
McCarthy et al. (2016, hereafter M16). These authors calibrated the
stellar and AGN feedback models to reproduce the observed local
galaxy stellar mass function and the hot gas mass fractions of X-ray
groups and clusters. They then demonstrated that the simulations
reproduce a very wide range of other independent observations,
including (particularly relevant for the present study) the overall
clustering of galaxies (the stellar mass autocorrelation function)

and the spatial and kinematic properties of satellites around groups
and clusters.

In the present study, we examine the cosmology dependence of
the velocity dispersion function (VDF) and the velocity dispersion
counts using BAHAMAS. We demonstrate that there is a strong depen-
dence, similar to that of the HMF, but with the important advantage
that the velocity dispersion counts can be directly measured (Sec-
tion 3.3). We then propose and verify a simple method for quickly
predicting (i.e. without the need to re-run large simulations) the ve-
locity dispersion counts for a given set of cosmological parameters.
This method involves convolving the simulated velocity dispersion–
halo mass relation (including both intrinsic and statistical scatter and
evolution) with the HMF predicted for those cosmological param-
eters (Section 4). We also demonstrate the constraining power of
this method for current and future spectroscopic surveys of groups
and clusters (Section 5). In an upcoming paper, Caldwell et al. (in
preparation), we will apply the theoretical method described in this
paper to the Galaxy And Mass Assembly (GAMA) survey (Driver
et al. 2011; Robotham et al. 2011) to constrain values of the standard
six-parameter cosmological model.

2 SI M U L AT I O N S

We use the BAHAMAS suite of cosmological smoothed particle hy-
drodynamics (SPH) simulations, which are described in detail in
M16. The BAHAMAS suite consists of large-volume, 400 h−1 Mpc on
a side, periodic box hydrodynamical simulations. Updated initial
conditions based on the maximum-likelihood cosmological param-
eters derived from the Wilkinson Microwave Anisotropy Probe 9
(WMAP9) data (Hinshaw et al. 2013) {�m, �b, ��, σ 8, ns, h}=
{0.2793, 0.0463, 0.7207, 0.821, 0.972, 0.700} and the Planck 2013
data (Planck Collaboration XVI 2014) = {0.3175, 0.0490, 0.6825,
0.834, 0.9624, 0.6711} are used.

We also use a massive neutrino extension of BAHAMAS by M16.
Specifically, McCarthy et al. have run massive neutrino versions of
the WMAP9 and Planck cosmologies for several different choices
of the total summed neutrino mass, Mν , ranging from the mini-
mum mass implied by neutrino oscillation experiments of ≈0.06 eV
(Lesgourgues & Pastor 2006) up to 0.48 eV. When implement-
ing massive neutrinos, all other cosmological parameters are held
fixed apart from the matter density due to cold dark matter,
which was decreased slightly to maintain a flat model (i.e. so that
�b + �cdm + �ν + �� = 1), and σ 8. The parameter σ 8 character-
izes the amplitude of linearized z = 0 matter density fluctuations
on 8 h−1 Mpc scales. Instead of holding this number fixed, the am-
plitude of the density fluctuations at the epoch of recombination (as
inferred by WMAP9 or Planck data assuming massless neutrinos) is
held fixed, in order to retain agreement with observed CMB angular
power spectrum. Note that other possible strategies for implement-
ing neutrinos are possible (e.g. decreasing �� instead of �cdm) but
McCarthy et al. have found with small test simulations that the pre-
cise choice of what is held fixed (apart from the power spectrum
amplitude) does not have a large effect on the local cluster popula-
tion. What is most important is the value of �ν , which is related to
Mν via the simple relation �ν = Mν/(93.14 eV h2) (Lesgourgues &
Pastor 2006) and ranges from 0.0013 to 0.0105 for our choices of
summed neutrino mass.

The Boltzmann code CAMB1 (Lewis, Challinor & Lasenby 2000,
2014 April version) was used to compute the transfer functions

1 http://camb.info/
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and a modified version of V. Springel’s software package N-GENIC2

to make the initial conditions, at a starting redshift of z = 127.
N-GENIC has been modified by S. Bird to include second-order La-
grangian perturbation theory corrections and support for massive
neutrinos.3

The runs used here have 2 × 10243 particles, yielding dark matter
and (initial) baryon particle masses for a WMAP9 (Planck 2013)
massless neutrino cosmology of ≈3.85 × 109 h−1 M� (≈4.45 ×
109 h−1 M�) and ≈7.66 × 108 h−1 M� (≈8.12 × 108 h−1 M�),
respectively. (The particle masses differ only slightly from this when
massive neutrinos are included.)

The comoving gravitational softening lengths for the baryon and
dark matter particles are set to 1/25 of the initial mean inter-
particle spacing but are limited to a maximum physical scale of
4 h−1 kpc (Plummer equivalent). The switch from a fixed comov-
ing to a fixed proper softening happens at z = 2.91. Nngb = 48
neighbours are used for the SPH interpolation, and the minimum
SPH smoothing length is limited to 0.01 times the gravitational
softening.

The simulations were run using a version of the Lagrangian
TreePM-SPH code GADGET3 (last described in Springel 2005), which
was significantly modified to include new subgrid physics as part of
the OverWhelmingly Large Simulations (OWLS) project (Schaye
et al. 2010). The simulations include prescriptions for star formation
(Schaye & Dalla Vecchia 2008), metal-dependent radiative cooling
(Wiersma, Schaye & Smith 2009a), stellar evolution, mass-loss, and
chemical enrichment (Wiersma et al. 2009b), a kinetic supernova
feedback prescription (Dalla Vecchia & Schaye 2008), and a model
for black hole mergers and accretion and associated AGN feed-
back (Booth & Schaye 2009). For runs with massive neutrinos, the
semi-linear algorithm developed by Ali-Haı̈moud & Bird (2013),
implemented in GADGET3, was used.

BAHAMAS is a direct descendant of the OWLS and cosmo-OWLS
(Le Brun et al. 2014; McCarthy et al. 2014) projects, both of which
explored the impact of varying the important parameters of the
subgrid models on the stellar and hot gas properties of haloes.
These projects demonstrated that many of the predicted observ-
able properties are highly sensitive to the details of the subgrid
modelling, particularly the modelling of feedback processes. The
idea behind BAHAMAS was therefore to calibrate the supernova and
AGN feedback models, using the intuition gained from OWLS
and cosmo-OWLS, on some key observables. M16 elected to cal-
ibrate the feedback using the local galaxy stellar mass function
and the gas mass fractions of groups and clusters, thereby ef-
fectively calibrating on the baryonic content of massive haloes
(with Mtot � 1012 M�).

For the purposes of the present study, the accuracy of the cali-
bration is not critically important provided an appropriate selection
criterion is imposed on the simulation satellite population, i.e. as
long as simulated satellites with total masses similar to those of the
observed satellites are selected (i.e. we want to select the same tracer
populations). In the case of simulations that reproduce the observed
galaxy stellar mass function, one can just select simulated galaxies
based on their stellar mass (or absolute magnitude). For simulations
that significantly violate the galaxy stellar mass function, and will
therefore have an unrealistic mapping between stellar mass and halo
mass, one could instead use semi-empirical constraints (e.g. subhalo
abundance matching, SHAM) to re-assign the stellar masses of the

2 http://www.mpa-garching.mpg.de/gadget/
3 https://github.com/sbird/S-GenIC

simulated galaxies, thereby imposing a realistic mapping between
stellar mass and halo mass. We explicitly demonstrate the lack of
sensitivity of the velocity dispersions to the details of the subgrid
modelling in Section 4.1.2.

3 C O S M O L O G Y D E P E N D E N C E O F V E L O C I T Y
D I S P E R S I O N C O U N T S

In this section, we compute the one-dimensional velocity disper-
sion counts from the simulations, demonstrating that they exhibit
a strong cosmology dependence, similar to that of the cluster mass
counts. We first specify how we estimate the velocity dispersion of
simulated groups and clusters.

3.1 Galaxy and group selection criteria

Before we can calculate velocity dispersions for the simulated
groups and clusters, an appropriate tracer population must be se-
lected. Previous studies (usually based on N-body simulations) of-
ten selected bound dark matter particles (e.g. Evrard et al. 2008).
However, the satellite galaxy population could in principle have
a different spatial/kinematic distribution compared to the under-
lying smooth dark matter distribution, e.g. through the effects of
dynamical friction, or just simply differences in the time of ac-
cretion of satellites compared to that of the (smooth) dark matter
component. Indeed, many previous studies have found that the satel-
lites are more spatially extended (i.e. have a lower concentration)
than what is measured for the total mass distribution (e.g. Carlberg,
Yee & Ellingson 1997; Lin, Mohr & Stanford 2004; Budzynski
et al. 2012; van der Burg et al. 2015). M16 have shown that in the
case of BAHAMAS, the satellites have a negative velocity bias (i.e. a
lower velocity dispersion) with respect to the underlying dark matter
particles.

With cosmological hydrodynamical simulations we can move be-
yond selecting dark matter particles and identify satellite galaxies.
We define galaxies in the simulations as self-gravitating substruc-
tures (identified with SUBFIND algorithm; Springel et al. 2001;
Dolag et al. 2009) with non-zero stellar mass. For the analysis be-
low, we present results based on selecting groups of five or more
satellites with stellar masses exceeding 1010 M� (i.e. that are ‘re-
solved’ in the simulations) and that are within a 3D radius r200m,
which is the radius that encloses a mean density that is 200 times
the mean universal density at that redshift [i.e. 200�m(z)ρcrit(z)].
Note that the derived velocity dispersions are not strongly sensi-
tive to these choices, however, owing to the fact that the total mass
distribution is fairly close to isothermal and that the radial distri-
bution of satellites is not a strong function of stellar mass (M16).
For completeness, in Appendix A, we provide fits to the velocity
dispersion–halo mass relation for various choices of mass defini-
tion and aperture (including both spherical and cylindrical radii) for
selecting satellites.

3.2 Velocity dispersion calculation

With a tracer population in hand, we proceed to calculate the ve-
locity dispersions of the simulated groups and clusters. There are
several possible methods for calculating the velocity dispersion of
a system (simulated or real), including calculating a simple root-
mean-square (rms) or fitting a normal distribution to the galaxy
redshifts. We have decided to use the so-called ‘gapper’ algorithm
(Wainer & Thissen 1976), due to its practical application to obser-
vations (e.g. Eke et al. 2004; Robotham et al. 2011; Ruel et al. 2014;
Proctor et al. 2015) and robustness at low richness (Beers, Flynn &
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Figure 1. The predicted one-dimensional VDF � ≡ dn/d log10σ v for the WMAP9 and Planck 2013 cosmologies for various choices of neutrino mass
(including massless) at z = 0. The error bars represent Poisson sampling errors and are estimated as the square root of the number of systems in a given velocity
dispersion bin divided by the simulation volume. The right-hand panel shows the ratio of the predicted VDFs with respect to the WMAP9 case with massless
neutrinos. Velocity dispersions are calculated using member galaxies within a 3D radius r200m that have stellar masses M∗ ≥ 1010 M�. Only groups/clusters
having at least five member galaxies are included, which is why the VDFs turn over at log10 σv km s−1 � 2.4. The predicted VDFs are a strong function of
cosmology, like the HMF, but offer the advantage that velocity dispersions are directly measurable.

Gebhardt 1990). With the gapper method, the velocities are sorted
from least to greatest and the velocity dispersion is then estimated
as

σgap =
√

π

N (N − 1)

N−1∑
i=1

wigi, (2)

with wi = i(N − i) and gi = vi + 1 − vi, where N is the number
of galaxies in the group or cluster, and vi is the ith velocity from
a list of the group’s galaxies’ velocities, which has been sorted in
ascending order.

Although, statistically, the gapper method does not require the
central object to be removed before calculation of the velocity dis-
persion, we have found that the mean gapper velocity dispersions
of galaxy groups are lower than the mean rms velocity dispersion
with the central removed. This is likely due to the central galaxy
moving at a velocity that is not typical of the satellite popula-
tion. Therefore, we follow Eke et al. (2004) and scale σ gap up by
[N/(N − 1)]1/2 to account for these effects. Clearly, this correction
is only relevant for low-mass groups with richnesses approaching
unity, for which we have found that including this correction results
in velocity dispersion estimates that are more stable to changes in
the stellar mass cut used to select satellites. We use the symbol σ v

to denote the gapper velocity dispersion after it has been multiplied
by the Eke et al. correction.

Although the simulation provides velocities in three dimensions,
we limit our analysis to using only one dimension (we do not average
the three one-dimensional velocity components) to replicate the
information available in real observations. Therefore, σ v is a one-
dimensional velocity dispersion.

3.3 VDF and number counts

3.3.1 Velocity dispersion function

We define the VDF (�) as the number of systems per unit comoving
volume per decade in velocity dispersion, i.e. � ≡ dn/d log10σ v.
In Fig. 1 (left-hand panel), we show the z = 0 VDFs for various
cosmologies. The errors on the VDF are the number of groups in
a velocity dispersion bin, divided by the volume of the simulation.

The VDF clearly depends on cosmology, as expected. Note that the
turnover in the VDF at low σ v is due to the fact that we impose
a richness cut of N ≥ 5 on our simulated groups (i.e. each system
must have at least five galaxies meeting the selection criteria noted
in Section 3.1). This is inconsequential for our purposes, since we
are primarily interested in the relative differences between different
cosmologies at the moment.

The right-hand panel of Fig. 1 shows the ratios of the predicted
VDFs with respect to that of the WMAP9 case with massless neutri-
nos. It more clearly demonstrates the strong cosmology dependence
of the VDF. For example, at a velocity dispersion σ v ∼ 1000 km s−1,
adopting a Planck 2013 cosmology results in ≈ 50 per cent more
systems compared to adopting a WMAP9 cosmology (both assum-
ing massless neutrinos). Even at a relatively modest velocity disper-
sion of ∼ 300 km s−1 (corresponding roughly to haloes with masses
∼ 1014 M�), the difference is still significant (≈ 20 per cent). The
introduction of massive neutrinos suppresses the number of high-
velocity-dispersion systems, as expected.

3.3.2 Number counts

Because the systems of interest have space densities of only
<10−4 Mpc−3, observational surveys covering a large fraction of
the sky are required to detect massive systems in appreciable num-
bers. Given the limited statistics, splitting the sample into bins to
measure a differential function, like the VDF, may not always be
possible, particularly as one moves to higher redshifts. An alterna-
tive, therefore, is to measure the cumulative number counts above
some threshold value in the observable. With this in mind, we show
in Fig. 2 the number density of systems with σ v ≥ 300 km s−1 as a
function of redshift for the various cosmologies we consider. This
plot is analogous to the SZ number counts in Planck Collaboration
XX (2014, see their fig. 7). There is a clear stratification between
the different cosmologies presented in this plot.

It is interesting to note that the velocity dispersion number counts
do not drop off very steeply with redshift, in contrast to the halo
mass counts. This is due to the fact that the radius enclosing a
spherical overdensity mass (e.g. r200m) decreases with increasing
redshift (because the background density increases with increasing
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Figure 2. The number density of systems with σ v ≥ 300 km s−1 as a
function of redshift for the various cosmologies we consider in Fig. 1. The
error bars are the square root of the number of objects in a redshift bin,
divided by the volume of the simulation.

redshift), and hence the typical orbital velocity, which scales as
(GM/r)1/2, will increase for a halo of fixed mass with increasing
redshift. The net result of this is that the number of systems above
a given threshold value in velocity dispersion will not drop off as
quickly as the number of haloes above a given halo mass threshold.

4 PR E D I C T I N G TH E V E L O C I T Y D I S P E R S I O N
C O U N T S FO R D I F F E R E N T C O S M O L O G I E S

In the previous section, we calculated, directly from the simulation,
cluster number counts as a function of velocity dispersion and red-
shift for seven different combinations of cosmology and neutrino
masses. The computational expense of running large simulations
like BAHAMAS prohibits us from running a dense grid of cosmologies
for comparison with observations, which is ultimately necessary
to determine not only the best-fitting cosmology, but also the un-
certainties in the best-fitting cosmological parameters. We therefore
require a means to rapidly compute the predicted velocity dispersion
counts for many different cosmologies.

Here we propose a method to combine the results of the sim-
ulations with the halo model formalism to predict the velocity
dispersion counts. Specifically, below we characterize the veloc-
ity dispersion–halo mass relation in the simulations (mean relation,
scatter, and evolution) with simple functions and show that when
convolved with the distribution of halo masses in the simulations,
it closely predicts the velocity dispersion counts. One can therefore
take advantage of popular theoretical models for the HMF (e.g.
Sheth, Mo & Tormen 2001; Tinker et al. 2008), provided they are
appropriately modified for the effects of baryon physics (e.g. Cui
et al. 2014; Velliscig et al. 2014), and our velocity dispersion–halo
mass relation to quickly and accurately predict the velocity disper-
sion counts as a function of cosmological parameters.

4.1 Velocity dispersion–halo mass relation

4.1.1 Present-day relation

We model the mean relation between velocity dispersion and halo
mass at a given redshift using a simple power law of the form

〈σv|M	〉 = a

(
M	

1014 M�

)b

. (3)

Figure 3. The velocity dispersion–halo mass relation for the Planck 2013
cosmology with massless neutrinos. Velocity dispersions are calculated us-
ing member galaxies within a 3D radius r200m and that have stellar masses
M∗ ≥ 1010 M�. The small black dots show the individual groups and clus-
ters, the red circles connected by a solid red curve show the mean velocity
dispersions in halo mass bins, and the gold line represents the best-fitting
power law to the mean relation (i.e. to the red circles). The upper and lower
dashed blue curves enclose 68 per cent of the population. The mean rela-
tion and scatter are well represented by a simple power-law relation with
lognormal scatter.

To derive the mean relation, we first compute the mean velocity
dispersions in mass bins of width 0.25 dex. A power law is then fitted
to these mean velocity dispersions. Note that by deriving the mean
velocity dispersion in bins of halo mass before fitting the power
law, we are giving equal weight to each of the mass bins. If instead
one were to fit a power law to all systems, groups would clearly
dominate the fit due to their much higher abundance compared to
clusters. However, we want to accurately characterize the relation
over as wide a range of halo masses as possible, motivating us to
bin the data in terms of mass first.

In Fig. 3, we show the velocity dispersion–halo mass relation for
the Planck 2013 cosmology (with massless neutrinos). The small
black dots show the individual groups and clusters, the red circles
connected by a solid red curve show the mean velocity dispersions
in halo mass bins, and the gold line represents the best-fitting power
law to the mean relation (i.e. to the red circles).

The mean z = 0 σ v–halo mass relation for this particular Planck
2013 cosmology simulation, adopting a group mass defined as
M200m, and selecting satellites within r200m with a minimum stel-
lar mass of 1010 M�, is

〈σv|M200m〉z=0 = 280.5 ± 1.0 km s−1

(
M200m

1014 M�

)0.385±0.003

. (4)

Note that although this relation was derived from simulations run
in a Planck 2013 cosmology, the best-fitting relations for other cos-
mologies we have examined are virtually identical. This likely just
reflects the fact that once systems are virialized, the orbital motions
of satellites are mainly sensitive to the present potential well depth
and not to how that potential well was assembled (which will change
with the cosmology). The lack of a cosmological dependence of the
velocity dispersion–halo mass relation, at redshifts less than one,
considerably simplifies matters, as it means one does not need to
re-fit the relation for every cosmology and can just convolve this
‘universal’ relation with the HMF (which does depend strongly on
cosmology, but for which there are many models in the literature for
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quickly calculating the HMF for a particular choice of cosmological
parameters).

It is interesting to note that the best-fitting relation has a slope
of b = 0.385, which is comparable to the self-similar prediction of
1/3. A similar finding has been reported recently by Munari et al.
(2013), who also used cosmological hydro simulations to examine
the velocity dispersion–halo mass relation (although they did not
address the issue of velocity dispersion counts).

Furthermore, the best-fitting amplitude differs significantly from
that found previously by Evrard et al. (2008) for dark matter particles
in pure N-body cosmological simulations:

〈σv|M200m〉Evrard+08,z=0 = 342 ± 1 km s−1

×
(

M200m

1014 M�

)0.355±0.002

, (5)

suggesting that the satellite galaxies have a ≈−20 per cent velocity
bias with respect to the velocity dispersion of the dark matter. M16
have confirmed this to be the case for BAHAMAS by comparing the
satellite velocity dispersions to the dark matter particles in the same
simulation.

Is the mass–velocity dispersion relation derived from BAHAMAS

realistic? As we have already argued, self-consistent simulations
ought to be able to predict velocity dispersions as reliably as they
can halo masses, so long as an appropriate selection is applied. How-
ever, one can also attempt to check the realism of the relation by
comparing to observational constraints, noting the important caveat
that observational halo mass estimates could have relevant system-
atic biases (which is what motivated our proposed use of velocity
dispersion counts in the first place). Of the methods currently in
use to estimate halo masses, weak lensing mass reconstructions are
expected to have the smallest bias (of only a few per cent) when
averaged over a large number of systems (e.g. Becker & Kravtsov
2011; Bahé, McCarthy & King 2012). M16 have compared the
mean halo mass–velocity dispersion relation from BAHAMAS (us-
ing the same galaxy stellar mass selection as our fiducial selection
employed here) to that derived from the maxBCG cluster sam-
ple (Koester et al. 2007), derived by combining the stacked velocity
dispersion–richness relation of Becker et al. (2007) with the stacked
weak lensing mass–richness relation of Rozo et al. (2009). Fig. 10 of
M16 demonstrates the excellent agreement between the simulations
and the observational constraints.

For completeness, in Table A1 of Appendix A we provide the
best-fitting power-law coefficients for the mean velocity dispersion–
halo mass relation for different combinations of mass definition and
aperture.

4.1.2 Sensitivity to baryon physics

As discussed in Section 1, predictions for the internal properties
of groups and clusters (particularly of the gaseous and stellar com-
ponents) are often sensitive to the details of the subgrid modelling
of important feedback processes. One can attempt to mitigate this
sensitivity by calibrating the feedback model against particular ob-
servables, as done in BAHAMAS. We anticipate that the velocity dis-
persions of satellites will be less sensitive to the effects of feedback
than, for example, the gas-phase properties or the integrated stel-
lar mass, since the dynamics of the satellite system is driven by the
depth of the potential well which is dominated by dark matter. How-
ever, the total mass (dark matter included) of groups and clusters
can also be affected at up to the 20 per cent level with respect to a
dark-matter-only simulation, if the feedback is sufficiently energetic

Figure 4. Mean fractional differences in the velocity dispersion and halo
mass of matched haloes between BAHAMAS and a corresponding dark-matter-
only simulation (WMAP9 cosmology). The error bars represent the standard
error on the mean. Note that we use SHAM to assign stellar masses to
subhaloes in the dark-matter-only simulations (see the text), in order to
apply the same selection criteria as imposed on the hydro simulations.
Baryon physics (AGN feedback, in particular) lowers the halo masses of
galaxy groups by ∼10 per cent (consistent with Velliscig et al. 2014) and
also reduces the velocity dispersions by ≈5 per cent.

(e.g. Velliscig et al. 2014). The feedback will also reduce the masses
of the satellites prior to accretion. The reduction of the satellite and
host masses could in turn also affect the resulting spatial distribu-
tion of the satellites somewhat, and hence the velocity dispersion.
Given these potential effects, it is therefore worth explicitly testing
the sensitivity of the velocity dispersions to baryon physics.

To test the sensitivity of the velocity dispersions to baryon
physics, we compare our (WMAP9) hydro simulation-based results
with that derived from a dark-matter-only version of the simulation
(i.e. using identical initial conditions but simulated with collision-
less dynamics only). To make a fair comparison with the dark-
matter-only simulation, we should select (approximately) the same
satellite population as in the hydro simulations. In order to do this,
we first assign stellar masses to the subhaloes using the SHAM
results of Moster, Naab & White (2013). Specifically, we convert
the Moster et al. stellar mass–halo mass relation (including their
estimated level of intrinsic scatter) into a stellar mass–maximum
circular velocity (Vmax) relation, using the M200–Vmax relation for
centrals from the dark matter simulation. We then estimate the stel-
lar masses of all subhaloes (centrals and satellites) using this stellar
mass–Vmax relation. [We have explicitly checked that the resulting
galaxy stellar mass function from our dark matter simulation repro-
duces the observed SDSS galaxy stellar mass function well, as found
in Moster et al. (2013).] Furnished with stellar mass estimates for
the subhaloes, we then apply the same galaxy and group selection
criteria on the dark-matter-only simulation as imposed on the hydro
simulations (as described in Section 3.1) and estimate the velocity
dispersions in the same way. We then match groups/clusters in the
dark-matter-only simulation to those in the hydro simulation using
the dark matter particle IDs.

In Fig. 4, we compare the mean fractional difference in the ve-
locity dispersions between the hydro and the dark-matter-only sim-
ulations, plotted as a function of the dark-matter-only halo mass.
For comparison, we also show the effect of baryon physics on the
halo mass. Baryon physics (AGN feedback, in particular) lowers
the halo masses of galaxy groups by ∼10 per cent (consistent with
Velliscig et al. 2014) and also reduces the velocity dispersions by
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Figure 5. Evolution of the mean σ v–halo mass relation back to z = 1. Velocity dispersions are calculated using member galaxies within a 3D radius, r200m, and
that have stellar masses M∗ ≥ 1010 M�. In the left-hand panel, we show the unscaled relations, while in the right-hand panel, the mean velocity dispersions
have been re-scaled to account for self-similar evolution. The velocity dispersion–halo mass relation evolves at the self-similar rate to a high level of accuracy.

≈ 5 per cent, approximately independent of (the dark matter only)
mass. Comparing these differences to the differences in the pre-
dicted VDFs for different cosmological models (see Fig. 1), the
effect is not large but is also not negligible. Therefore, if one
plans to use velocity dispersions from dark-matter-only simula-
tions (+SHAM) to predict the VDF, the velocity dispersions should
be appropriately scaled down by ≈5 per cent. Alternatively, if one
starts from an HMF from a dark-matter-only simulation, the halo
masses first need to be adjusted (e.g. as proposed by Velliscig
et al. 2014) and then our hydro-simulated velocity dispersion–halo
mass relation can be applied (including the scatter and evolution, as
described below).

4.1.3 Evolution

To predict the evolution of the velocity dispersion counts, we need to
know how the velocity dispersion–halo mass relation evolves with
redshift. Under the assumption of self-similar evolution, the typical
orbital velocity of a halo of fixed spherical overdensity mass evolves
as σ v ∝ E(z)1/3, where E(z) = [�m(1 + z)3 + ��]1/2, if the mass
is defined with respect to the critical density, or as σ v ∝ (1 + z)1/2

if the mass is defined with respect to the mean matter density. Note
that even though we have already shown that the dependence on
halo mass (the power-law index) at z = 0 is not exactly self-similar,
this does not automatically imply that the redshift evolution of the
amplitude will not be well approximated with a self-similar scaling.
Indeed, such behaviour is seen in other variables such as the X-ray
luminosity–temperature relation, which displays a strong departure
from self-similarity in the slope of the relation but, according to
some current analyses, evolves at a close to self-similar rate (e.g.
Maughan et al. 2012).

In the left-hand panel of Fig. 5, we plot the mean velocity
dispersion–halo mass relation at a variety of redshifts going back
to z = 1. Clearly, there is a strong increase in the amplitude of the
relation with increasing redshift. In the right-hand panel of Fig. 5,
we scale out the self-similar expectation, which has the effect of vir-
tually removing the entire redshift dependence seen in the left-hand
panel. In other words, to a high level of accuracy (�2 per cent), we
find that the velocity dispersion–halo mass relation evolves self-
similarly. This statement remains the case if one instead defines
the mass according to the critical density and uses E(z)1/3 as the

self-similar expectation, as opposed to (1 + z)1/2, so that

σv(M	,mean, z) = σv(M	,mean, z = 0) (1 + z)1/2 or

σv(M	,crit, z) = σv(M	,crit, z = 0) E(z)1/3. (6)

4.1.4 Total scatter and its evolution

The scatter about the mean σ v–halo mass relation is non-negligible
at all masses and can be particularly large at low masses, due to
poor sampling (as we will show below). Modelling this scatter is
necessary if one wishes to predict the velocity dispersion counts
by convolving the velocity dispersion–halo mass relation with an
HMF, as Eddington bias will become quite important. Here we
characterize the scatter in the velocity dispersion as a function of
halo mass and redshift.

To aid our analysis of the scatter, we first divide the velocity dis-
persion of each system by that predicted by the best-fitting power
law to our mean velocity dispersion–halo mass relation. After di-
viding out the mean mass relation, the residuals (see Fig. 6) clearly
show that the scatter decreases with mass. To improve statistics, the
velocity dispersions for different redshifts have been re-scaled to
z = 0 using equation (6), stacked, and binned to model the scatter
as a function of halo mass. The bin widths are chosen to equally
sample the range in log10 halo mass space, while avoiding large
statistical errors from low bin populations. The first four halo mass
bins are 0.25 dex in width, increasing to 0.5 dex for the following
two bins, and the final bin has a width of 0.25 dex.

It is interesting to note that previous studies that used dark mat-
ter particles or subhaloes to estimate the velocity dispersions (e.g.
Evrard et al. 2008; Munari et al. 2013) found that the scatter did
not vary significantly with system mass. The difference between
these works and the current one is that we select only relatively
massive galaxies, which should be more appropriate for compar-
isons to observations. Since massive galaxies become increasingly
rare in low-mass groups, the statistical uncertainty in the derived
velocity dispersion increases. Studies that use dark matter particles
(or, to a lesser extent, all dark matter subhaloes), on the other hand,
have essentially no statistical error and therefore any scatter present
is likely to be intrinsic in nature (e.g. due to differences in state of
relaxation). These studies therefore suggest that the intrinsic scatter
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Figure 6. Residuals about the best-fitting power law to the mean velocity dispersion–halo mass relation. The seven histograms correspond to different mass
bins. The solid black curve represents the residuals about the mean, while the solid red curve represents the best-fitting lognormal distribution. To boost our
statistics, we stack the velocity dispersions from all redshifts and vary the binning in halo mass. Lognormal distributions describe the residuals about the mean
relation quite well, but the width of the distribution (i.e. the scatter) about the mean decreases strongly with halo mass.

does not depend significantly on halo mass, a finding which we
confirm below.

We fit the total scatter residuals about the mean relation in each
mass bin with a lognormal distribution. Fig. 6 shows histograms
of log velocity dispersion residuals, and the normal curve fit. A
lognormal distribution describes the residuals well in all of the
mass bins we consider. We note that in the first three (lowest)
mass bins, the distribution becomes somewhat skewed relative to
lognormal when systems with less than five members are included
in the analysis. As discussed in Section 3.1, we have excluded
these systems from our analysis, noting that when comparing to
observed velocity dispersion counts from GAMA (Caldwell et al.,
in preparation), we also plan to impose a richness cut of ≥5 on the
observed sample.

In Fig. 7, we show the evolution of the total scatter–halo mass
relation for seven redshifts from z = 0 to 1. Here one can more
clearly see that the scatter varies strongly with halo mass. However,
it does not appear to vary significantly with redshift, at least back
to z = 1.

4.1.5 Decomposing the total scatter into statistical
and intrinsic components

Although quantifying the total scatter as a function of halo mass
(in order to interpolate it with an HMF later) is the primary goal
of this section, a deeper understanding of the scatter is required if
we wish to consistently compare with observations. That is because
the scatter is composed of both intrinsic and statistical components,
and the latter is clearly going to be a function of observational

Figure 7. Evolution of the total scatter about the mean velocity dispersion–
halo mass relation for seven redshifts from z = 0 to 1. There is no evidence
for significant evolution in the scatter about the mean relation.

survey parameters (e.g. limiting magnitude). We therefore proceed
to decompose the total scatter into its two components.

We have focused so far on the (total) scatter as a function of
mass, but the statistical component is best understood through its
dependence on richness, since fundamentally it is the number of
tracers that determines how well the (true) velocity dispersion can
be determined.

Statistical scatter is the scatter caused by randomly sampling a
distribution with a finite number of points. In our particular case,
sampling the velocity distribution of a galaxy group or cluster with a
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Figure 8. Statistical scatter as a function sample size, N, determined from
MC simulations (see the text). The black points are the calculated value
(derived from the MC simulations) for each sample size, and the red line is
a power-law fit to the points with N ≥ 5. A simple power-law relation works
well for N ≥ 5.

finite number of galaxies means that we can only measure the veloc-
ity dispersion to a certain level of accuracy. Clearly, the more tracer
galaxies we have, the more precise and accurate our measurement
of the velocity dispersion will become.

To help understand the level of statistical scatter contributing to
the total scatter, we use simple Monte Carlo (MC) simulations to
determine the accuracy to which the velocity dispersion of a system
can be determined given a finite number of tracers. We assume
a normal distribution for the velocities and vary the number of
tracers from 2 up to 1500 (which approximately spans the range of
richnesses relevant for groups and clusters), drawing 1000 random
samples for each number of tracers we consider. So, for example, to
determine how well one can measure the velocity dispersion for a
system with five members, we would randomly draw five velocities
from a normal distribution and then compute the velocity dispersion
using the gapper method. We repeat this 1000 times, each time
recording the derived velocity dispersion. This gives us a spread
of velocity dispersions at fixed richness, which we then fit with a
lognormal distribution. The width of this lognormal distribution is
the statistical scatter in the velocity dispersion for a system with
five members.

In Fig. 8, we plot the derived statistical scatter as a function of
richness. As expected, the statistical scatter increases with decreas-
ing richness. We find that for N ≥ 5, the scatter is well modelled by
a simple power law of the form

σstat(ln(σv)) = 0.07

(
N

100

)−0.5

for N ≥ 5. (7)

This result is generally applicable for systems that have an under-
lying normal distribution, regardless of whether they are simulated
or real clusters. Note that this does not depend on whether the
multiplicative Eke et al. correction is applied because the scatter is
modelled in ln (σ v).

We now have a measurement of the statistical scatter at fixed
richness. In analogy with Fig. 7, we can compute the total scatter in
bins of richness as opposed to mass (i.e. we compute the scatter in
the residuals about the mean velocity dispersion–richness relation).
The total scatter is just composed of statistical and intrinsic com-
ponents (summed in quadrature), so we can now also determine the
intrinsic scatter as a function of richness.

Figure 9. Contributions of intrinsic and statistical scatter to the total scatter
about the mean velocity dispersion–richness relation, for the case of a Planck
cosmology with massless neutrinos and selecting only groups with at least
five member galaxies with stellar masses M∗ ≥ 1010 M� and that are within
r200m. The black curve is the total scatter, the red curve is the statistical scat-
ter, and the dashed blue curve is the derived intrinsic scatter (assuming that
the intrinsic and statistical scatters sum in quadrature to give the total scat-
ter). Statistical scatter dominates for all but the most rich/massive systems.
The intrinsic scatter does not depend strongly on richness/mass.

In Fig. 9, we show the contribution of the statistical and intrinsic
scatter to the total scatter as a function of richness. We find that
statistical scatter dominates the total scatter for all but the richest
(highest mass) systems.

Note that it is galaxy selection criterion that determines the degree
of statistical scatter. In the simulations, we use a galaxy stellar
mass limit of 1010 M�, but if we were able to lower that limit
(e.g. by using higher resolution simulations), the statistical scatter
would decrease. Likewise for observational surveys, if the apparent
magnitude limit of the survey were increased (i.e. so that we could
measure fainter systems), the number of galaxies will increase and
so too will the accuracy of the velocity dispersions. Other selection
criteria (such as red sequence selection) can also affect the estimated
velocity dispersion (e.g. Saro et al. 2013) via their influence on the
number of tracers used to measure the velocity dispersion.

Note that while the statistical scatter is a strong function of rich-
ness, the intrinsic scatter does not vary significantly over the range
of richnesses we have examined, consistent with previous studies
(e.g. Evrard et al. 2008; Munari et al. 2013). In Appendix A, we
provide the mean intrinsic scatter for a variety of mass definitions
and apertures. The average intrinsic scatter varies little with mass
definition and choice of aperture with values ≈0.19 dex in lnσ .

4.2 Summary of velocity dispersion–mass relation

Here we summarize our characterization of the velocity dispersion–
halo mass relation for groups with at least five members with stellar
masses M∗ ≥ 1010 M�. The mean relation can be well described
by a simple power law spanning low-mass groups to high-mass
clusters (see Fig. 3), approximately independent of cosmology (for
example, the amplitude for the mean σ v–M power law differs by
≈0.3 per cent between Planck and WMAP9 cosmologies). The mean
power law evolves self-similarly back to z = 1 at least (see Fig. 5).
Note that the amplitude of the relation is ≈5 per cent lower than
that predicted by a dark-matter-only simulation where a consistent
selection of satellites is applied (see Fig. 4). The scatter about the
mean relation can be well represented by a lognormal distribution
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Figure 10. Comparison of the VDF from the Planck 2013 (massless neu-
trino) simulation (solid black curve) with that predicted by a simple model
of the velocity dispersion–halo mass relation convolved with the halo mass
distribution from the simulations (red dashed curve). Also shown is the
model prediction when the scatter in the velocity dispersion–halo mass is
ignored (blue dashed curve). The model with scatter reproduces the simula-
tion VDF quite well over the full range of velocity dispersions. Ignoring the
effects of scatter and associated Eddington bias leads to an underestimate of
the number of systems with velocity dispersions exceeding 300 km s−1.

whose width varies strongly as a function of halo mass (see Fig. 6)
but not with redshift (see Fig. 7). The strong variation in scatter with
halo mass is due to the increasing importance of statistical scatter
with decreasing mass/richness (see Fig. 8), whereas the intrinsic
scatter does not depend significantly upon mass/richness and is
only important for systems with richnesses exceeding several tens
(see Fig. 9).

4.3 Testing the model

We now test the accuracy of our simple velocity dispersion–halo
mass relation model by convolving it with the halo mass distri-
bution drawn from the simulations and comparing the predicted
velocity dispersion distribution with the one drawn directly from
the simulations. In particular, for the model prediction, we use the
mass of each halo to infer the predicted mean velocity dispersion
using equations (3) and (6). We then (additively) apply scatter by
randomly drawing from a lognormal distribution with a width set
by the total scatter–halo mass relation, which we characterize with
the black curve in Fig. 9.

Fig. 10 compares the VDF derived directly from the simulations
with that predicted by our simple model of the velocity dispersion–
halo mass relation convolved with the halo mass distribution, both
imposing a richness cut of N ≥ 5. We also show the effect of ig-
noring the scatter in the velocity dispersion–halo mass relation. In
spite of its simplicity, the model prediction (with scatter) reproduces
the simulation VDF remarkably well (to better than 10–15 per cent
accuracy) over the full range of velocity dispersions that we sam-
ple. By contrast, ignoring the scatter causes the curve to strongly
underpredict the VDF above velocity dispersions of 300 km s−1.
Modelling the scatter is therefore crucially important if one wishes
to make an accurate prediction for the velocity dispersion counts
and obtain unbiased constraints on cosmological parameters.

In Fig. 11, we compare the evolution of the velocity dispersion
counts for systems with σ v ≥ 300 km s−1 from various simulations
with different cosmologies with that predicted by our simple model.

Figure 11. The number density of systems with σ v ≥ 300 km s−1 as a
function of redshift. Solid lines are from the simulation; dashed lines are
velocity dispersions constructed from the models described in the previous
section 4 and convolved with the HMF from the BAHAMAS simulation. The
colours indicate different cosmologies: blue = Planck, green = WMAP9,
and red = WMAP9 with neutrino mass = 0.48 eV.

There is good agreement with between model predictions and the
simulations.

Finally, we note that in the above analysis, the effects of feed-
back have already implicitly been included. As demonstrated in
Section 4.1.2, feedback can affect both the halo mass and the ve-
locity dispersion. Therefore, in order to predict the VDF from the
HMF, one must appropriately account for feedback effects on the
halo mass and then apply the above velocity dispersion–halo mass
relation. The modification of the halo masses is already implicitly
included in our analysis, as we use the halo mass distribution di-
rectly from the hydro simulations. If, however, one wishes to use
theoretical mass functions in the literature that are based on dark
matter simulations (e.g. Sheth et al. 2001; Tinker et al. 2008), ap-
propriate feedback modifications should be applied (such as those
proposed by Velliscig et al. 2014).

5 C O S M O L O G I C A L C O N S T R A I N T
FORECASTS

In Section 4, we outlined a simple yet accurate method for predicting
the velocity dispersion counts for different cosmologies. Here we
use this apparatus to make some simple forecasts for current and
future spectroscopic surveys. In particular, we examine the kind of
constraints that these surveys will place on the σ 8–�m plane and on
the summed mass of neutrinos.

We consider three different synthetic spectroscopic surveys, with
characteristics chosen to approximately match those of the com-
pleted GAMA survey (Driver et al. 2011), the upcoming WAVES-
Wide (Wide Area Vista Extragalactic Survey) survey (Driver et al.
2016), and the upcoming Dark Energy Survey Instrument (DESI)
bright galaxy survey (Levi et al. 2013). For the synthetic GAMA-
like survey, we adopt a survey field of view of 180 square degrees
and galaxy stellar mass limit of 1010 M�. For the synthetic WAVES-
like survey, we adopt 1000 square degrees and a stellar mass limit
of 109 M�. For the synthetic DESI-like survey, we adopt 14 000
square degrees and a stellar mass limit of 1010 M�. For all three
cases, we examine the cosmological constraints that can be derived
using the velocity dispersion number counts exceeding 300 km s−1

within a redshift z < 0.2. We note that it may be possible to obtain
improved constraints by looking at multiple thresholds in velocity
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Figure 12. Forecasted constraints on σ 8 and �m using the velocity dis-
persion number counts. Dashed contours define the 1σ confidence interval
for the GAMA-like, WAVES-like, and DESI-like synthetic surveys that we
consider. The black star indicates the adopted test cosmology. The joint
constraint scales approximately as σ 8�m (see the text). The amplitude can
be determined to approximately 20 per cent, 10 per cent, and 4 per cent accu-
racy with the GAMA-like, WAVES-like, and DESI-like synthetic surveys,
respectively.

dispersion and/or multiple redshift bins, which we intend to explore
further in future work.

5.1 σ 8–�m plane

We construct a 151×151 grid of [σ 8, �m] values ranging from
0.7 < σ 8 < 0.9 and 0.2 < �m < 0.4. For the other parameters, we
adopt a ‘WMAP9-based’ cosmology, fixing h = 0.7, �b = 0.0463,
ns = 0.972, and �� = 1 − �m. For a given set of cosmological
parameters (of which there are 22 801 independent sets), we use
CAMB to compute the z = 0 linear transfer function, which is used as
input for the Tinker et al. (2008) HMF. We convolve the predicted
HMF with the halo mass–velocity dispersion relation derived in the
previous sections. Note that for the case of the synthetic WAVES-
like survey, we have decreased the statistical scatter in the velocity
dispersions in line with the adopted lower stellar mass limit of that
survey. This was done by using the abundance matching procedure
described in Section 4.1.2 to estimate how much the richnesses
would increase by dropping the stellar mass limit from 1010 to
109 M�.

Fig. 12 shows the 1σ confidence interval for a test cosmology
of σ 8 = 0.8 and �m = 0.3; i.e. we assume that these are the truth
and see how well this is recovered. The 1σ confidence interval
shows a strong degeneracy in the joint constraints on σ 8 and �m,
as expected. We find that a simple power law with σ8 ∝ �α

m with
α ≈ −1 describes the degeneracy relatively well. The exact slope
of the degeneracy depends somewhat on which synthetic survey
is considered; we find α = −0.86 ± 0.01, −1.08 ± 0.01, and
−1.13 ± 0.01 for the GAMA-like, WAVES-like, and DESI-like
surveys, respectively.

It is worth noting that the degeneracy found here is significantly
steeper than that found in some previous halo mass counts studies,
which indicate α ≈ −0.6 (e.g. Vikhlinin et al. 2009; Rozo et al.
2010). The reason for this difference is not that we are using ve-
locity dispersions as opposed to halo mass, but is instead due to
the specific velocity dispersion threshold of 300 km s−1 that we
adopt. In particular, this velocity dispersion threshold corresponds
roughly to a halo mass of ∼1014 M�, which is lower than most

Figure 13. Forecasted constraints on the summed mass of neutrinos, Mν .
The 1σ confidence intervals are plotted in red, blue, and green for the
GAMA-like, WAVES-like, and DESI-like synthetic surveys that we con-
sider. We adopted Mν = 0.06 eV as the test cosmology.

current halo mass counts studies (certainly compared to X-ray- and
SZ-based studies). Note that the abundance of groups is somewhat
more sensitive to �m than to σ 8, whereas the reverse is true for
high-mass clusters. We have verified that using higher velocity dis-
persion thresholds leads to a flatter degeneracy between σ 8 and
�m, similar in shape to that found previously for studies based on
massive clusters. This motivates our comment above that one can
potentially use multiple velocity dispersion thresholds to help break
the degeneracy between the two cosmological parameters.

It is immediately evident from Fig. 12 that upcoming spectro-
scopic surveys will severely constrain the amplitude of the degen-
eracy. We can quantify this by comparing the width of the 1σ con-
fidence interval (i.e. the width perpendicular to the degeneracy) to
the best-fitting amplitude. We find that a GAMA-like survey would
be expected to constrain the amplitude to ≈20 per cent, whereas a
WAVES-like survey would constrain it to ≈10 per cent and a DESI-
like survey would constrain it to better than 4 per cent accuracy.

Note that in the above analysis we have held the other cosmolog-
ical parameters fixed. Allowing these to be free will likely broaden
the constraints on σ 8 and �m slightly.

5.2 Summed mass of neutrinos, Mν

Here we examine how well the velocity dispersion counts can be
used to constrain the summed mass of neutrinos. For this case,
we adopt a Planck-based cosmology, fixing h = 0.6726, �b =
0.0491, �cdm = 0.2650, ns = 0.9652, and assume a flat universe
(i.e. as we increase Mν and �ν , �� is decreased to maintain
�tot = 1). By holding all parameters apart from Mν and �� fixed,
we are essentially considering a case where we take the primary
CMB cosmology to be a correct description of the Universe at early
times and quantify how well adding measurements of the velocity
dispersion counts constrains the summed mass of neutrinos.

We consider 151 different values of the summed neutrino mass,
ranging from the minimum allowed value of 0.06 up to 1 eV. We
adopt Mν = 0.06 eV as our test case.

In Fig. 13, we explore the constraining power of the three syn-
thetic surveys described above. The error bars show the 1σ confi-
dence errors. A GAMA-like survey, when combined with primary
CMB constraints, would be expected to constrain Mν � 0.38 eV.
A WAVES-like survey will improve on this somewhat, while a
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DESI-like survey will tightly constrain the summed mass of neu-
trinos (Mν < 0.12 eV) when it is combined with primary CMB
measurements. The potential constraints from a DESI-like exper-
iment are interesting from a particle physics perspective, as they
could potentially allow one to distinguish between the ‘normal’ and
‘inverted’ neutrino hierarchy scenarios (see Lesgourgues & Pastor
2006 for further discussion). However, we note that our forecasts
are still fairly simplistic, in that we have held the other cosmologi-
cal parameters fixed (although they are strongly constrained by the
primary CMB) and we have not considered the effects of redshift
errors, group selection, etc. On the other hand, we have also not
used the full information available in our data set (e.g. multiple red-
shifts and velocity dispersion thresholds), which would be expected
to improve the precision of the constraints.

6 D I S C U S S I O N A N D C O N C L U S I O N S

Recent work has highlighted the importance of systematic uncer-
tainties in halo mass measurements for ‘cluster cosmology’. Mo-
tivated by this, we have proposed an alternative test, which is the
number counts as a function of one-dimensional velocity dispersion
of the galaxies in the cluster (the VDF), as opposed to halo mass. We
argue that the velocity dispersion can be predicted basically as ro-
bustly as the mass in cosmological simulations but, unlike the mass,
the velocity dispersion can be directly observed, thus offering a way
to make a direct comparison of cluster counts between theory and
observations. We note that the proposed use of velocity dispersion
counts to probe cosmology is not new. In pioneering work, Evrard
et al. (2008) previously used dark-matter-only simulations to show
that one could constrain the amplitude of density fluctuations (σ 8)
in this way. Here we have extended these ideas and applied them to
realistic hydrodynamical simulations.

We have used the BAHAMAS suite of cosmological hydrodynam-
ical simulations (M16) to explore the cosmological dependence
of the VDF, which we also find to be strong (see Figs 1 and 2).
For example, at a velocity dispersion σ v ≈ 1000 km s−1, adopting
a Planck 2013 cosmology results in ≈ 50 per cent more systems
compared to adopting a WMAP9 cosmology (both assuming mass-
less neutrinos). Even at a relatively modest velocity dispersion of
≈ 300 km s−1 (corresponding to haloes with masses ∼1014 M�),
the difference is still significant (≈ 20 per cent). The addition of
a massive neutrino component strongly suppresses the number of
high-velocity-dispersion systems, as expected.

Unfortunately, the expense of large-scale simulations like
BAHAMAS prohibits us from fully sampling the full range of cosmo-
logical parameters allowed by current experiments. Therefore, to
place robust constraints on cosmological parameters using the VDF
requires a method to quickly compute the predicted VDF for a given
set of parameters. We have proposed a simple method to achieve this
goal: convolution of the simulation-based velocity dispersion–halo
mass relation with theoretically predicted HMFs, which have been
appropriately modified to take into account feedback (e.g. Velliscig
et al. 2014).

We have shown that the mean relation is well characterized by a
simple power law spanning low-mass (≈ 1012.7 M�) groups to high-
mass (≈ 1015 M�) clusters (see Fig. 3) which evolves according to
the self-similar expectation (see Fig. 5) and does not depend signif-
icantly on cosmology (see Fig. 4). Note that the amplitude of the
relation is ≈5 per cent lower than that predicted by a dark-matter-
only simulation where a consistent selection of satellites is applied
(see Fig. 4). The scatter about the mean relation is lognormal with
a width that varies strongly as a function of halo mass (see Fig. 6)

but does not vary with redshift (see Fig. 7). The strong variation in
scatter with halo mass is due to the increasing importance of sta-
tistical scatter at low masses due purely to decreasing richness (see
Fig. 8), whereas the intrinsic scatter does not depend significantly
upon mass/richness and only becomes important for systems with
several tens of galaxies (see Fig. 9). We have shown that, in spite of
the simplicity of our model for the velocity dispersion–halo mass
relation, it recovers the VDF and number counts derived directly
from the simulation quite well (see Figs 10 and 11).

In Section 5, we demonstrated that measurements of the veloc-
ity dispersion counts with current spectroscopic surveys such as
GAMA, and (especially) with upcoming wide-field surveys such as
WAVES and DESI, can be used to strongly constrain the σ 8–�m

plane (Fig. 12) and, when combined with primary CMB measure-
ments, the summed mass of neutrinos (Fig. 13).

Finally, in the present study, we have made predictions for an
essentially perfect observational survey, where all groups above a
given velocity dispersion and richness cut are accounted for and with
zero contamination (i.e. false positives). Clearly, these conditions
are never strictly met in real observational surveys. To address these
issues, we advocate the use of synthetic (mock) surveys, which can
be analysed in the same way as the data. This allows one to implicitly
include the effects of completeness and impurity in the predictions,
and it also ensures similar statistical scatter. In a follow-up paper
(Caldwell et al., in preparation), we plan to compare our theoretical
predictions to the GAMA galaxy group catalogue (Robotham et al.
2011) using such synthetic surveys.
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APPENDI X A : V ELOCI TY DI SPERSI ON–H ALO
MASS RELATI ONS FOR ALTERNATI VE MAS S
D E F I N I T I O N S A N D A P E RT U R E S

In Table A1, we present models for the velocity dispersion–mass
relation and its scatter. Since the relation changes slightly depending
on the distribution of the galaxies in the cluster, we have calculated
the fits for several mean and critical mass definitions and cluster
radii.

Table A1. Power-law fits to the z = 0 σ v–halo mass relation for Planck
2013 cosmology. Fits are of the form loge(y) = a + b loge[M/1014 M�].
The average intrinsic scatter is provided for each halo mass and aperture cut.
The value for intrinsic scatter quoted below adds with the natural logarithm
of statistical scatter in quadrature to equal the loge of total scatter for a group
or cluster on the velocity dispersion–halo mass plane.

Halo mass Aperture σ v–M intercept σ v–M slope Intrinsic scatter

M500, mean R500, mean 5.7788 0.4003 0.1881
M500, crit R500, crit 6.0084 0.4113 0.1897
M200, mean R200, mean 5.6366 0.3852 0.1864
M200, crit R200, crit 5.8220 0.4019 0.1906
M200, mean 1 Mpc 5.6672 0.3986 0.1877
M200, crit 1 Mpc 5.8138 0.3908 0.1877
M200, mean 0.5 Mpc 5.7104 0.4060 0.1889
M200, crit 0.5 Mpc 5.8583 0.4058 0.1889
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