1,242 research outputs found

    Manganese and Parkinson’s Disease: A Critical Review and New Findings

    Get PDF
    The goal of this review was to examine whether chronic Mn exposure produces dopamine neuron degeneration and PD or whether it has a distinct neuropathology and clinical presentation. I reviewed available clinical, neuroimaging, and neuropathological studies in humans and nonhuman primates exposed to Mn or other human conditions that result in elevated brain Mn concentrations. Human and nonhuman primate literature was examined to compare clinical, neuroimaging, and neuropathological changes associated with Mn-induced parkinsonism. Clinical, neuroimaging, and neuropathological evidence was used to examine whether Mn-induced parkinsonism involves degeneration of the nigrostriatal dopaminergic system as is the case in PD. The overwhelming evidence shows that Mn-induced parkinsonism does not involve degeneration of midbrain dopamine neurons and that l-dopa is not an effective therapy. New evidence is presented on a putative mechanism by which Mn may produce movement abnormalities. Confirmation of this hypothesis in humans is essential to make rational decisions about treatment, devise effective therapeutic strategies, and set regulatory guidelines

    The possible existence of Hs in nature from a geochemical point of view

    Get PDF
    A hypothesis of the existence of a long-lived isotope 271Hs in natural molybdenites and osmirides is considered from a geochemical point of view. It is shown that the presence of Hs in these minerals can be explained only by making an additional ad hoc assumption on the existence of an isobaric pair of 271Bh-271Hs. This assumption could be tested by mass-spectrometric measurements of U, Pb, Kr, Xe, and Zr isotopic shifts.Comment: 5 pages, no figures. Physics of Particles and Nuclei Letters, 2006, Vol. 3, No. 3, pp. 165-168 in pres

    Complex Fluids and Hydraulic Fracturing

    Get PDF
    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process

    Bayesian estimation of Lassa virus epidemiological parameters: Implications for spillover prevention using wildlife vaccination

    Get PDF
    Lassa virus is a significant burden on human health throughout its endemic region in West Africa, with most human infections the result of spillover from the primary rodent reservoir of the virus, the natal multimammate mouse, M. natalensis. Here we develop a Bayesian methodology for estimating epidemiological parameters of Lassa virus within its rodent reservoir and for generating probabilistic predictions for the efficacy of rodent vaccination programs. Our approach uses Approximate Bayesian Computation (ABC) to integrate mechanistic mathematical models, remotely-sensed precipitation data, and Lassa virus surveillance data from rodent populations. Using simulated data, we show that our method accurately estimates key model parameters, even when surveillance data are available from only a relatively small number of points in space and time. Applying our method to previously published data from two villages in Guinea estimates the time-averaged R0 of Lassa virus to be 1.74 and 1.54 for rodent populations in the villages of Bantou and Tanganya, respectively. Using the posterior distribution for model parameters derived from these Guinean populations, we evaluate the likely efficacy of vaccination programs relying on distribution of vaccine-laced baits. Our results demonstrate that effective and durable reductions in the risk of Lassa virus spillover into the human population will require repeated distribution of large quantities of vaccine

    Epigenetics and obesity: the devil is in the details

    Get PDF
    Obesity is a complex disease with multiple well-defined risk factors. Nevertheless, susceptibility to obesity and its sequelae within obesogenic environments varies greatly from one person to the next, suggesting a role for gene × environment interactions in the etiology of the disorder. Epigenetic regulation of the human genome provides a putative mechanism by which specific environmental exposures convey risk for obesity and other human diseases and is one possible mechanism that underlies the gene × environment/treatment interactions observed in epidemiological studies and clinical trials. A study published in BMC Medicine this month by Wang et al. reports on an examination of DNA methylation in peripheral blood leukocytes of lean and obese adolescents, comparing methylation patterns between the two groups. The authors identified two genes that were differentially methylated, both of which have roles in immune function. Here we overview the findings from this study in the context of those emerging from other recent genetic and epigenetic studies, discuss the strengths and weaknesses of the study and speculate on the future of epigenetics in chronic disease research

    Bridging the gap: Using reservoir ecology and human serosurveys to estimate Lassa virus spillover in West Africa

    Get PDF
    Forecasting the risk of pathogen spillover from reservoir populations of wild or domestic animals is essential for the effective deployment of interventions such as wildlife vaccination or culling. Due to the sporadic nature of spillover events and limited availability of data, developing and validating robust, spatially explicit, predictions is challenging. Recent efforts have begun to make progress in this direction by capitalizing on machine learning methodologies. An important weakness of existing approaches, however, is that they generally rely on combining human and reservoir infection data during the training process and thus conflate risk attributable to the prevalence of the pathogen in the reservoir population with the risk attributed to the realized rate of spillover into the human population. Because effective planning of interventions requires that these components of risk be disentangled, we developed a multi-layer machine learning framework that separates these processes. Our approach begins by training models to predict the geographic range of the primary reservoir and the subset of this range in which the pathogen occurs. The spillover risk predicted by the product of these reservoir specific models is then fit to data on realized patterns of historical spillover into the human population. The result is a geographically specific spillover risk forecast that can be easily decomposed and used to guide effective intervention. Applying our method to Lassa virus, a zoonotic pathogen that regularly spills over into the human population across West Africa, results in a model that explains a modest but statistically significant portion of geographic variation in historical patterns of spillover. When combined with a mechanistic mathematical model of infection dynamics, our spillover risk model predicts that 897,700 humans are infected by Lassa virus each year across West Africa, with Nigeria accounting for more than half of these human infections.</jats:p

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal
    corecore