709 research outputs found

    An output-sensitive algorithm for the minimization of 2-dimensional String Covers

    Full text link
    String covers are a powerful tool for analyzing the quasi-periodicity of 1-dimensional data and find applications in automata theory, computational biology, coding and the analysis of transactional data. A \emph{cover} of a string TT is a string CC for which every letter of TT lies within some occurrence of CC. String covers have been generalized in many ways, leading to \emph{k-covers}, \emph{λ\lambda-covers}, \emph{approximate covers} and were studied in different contexts such as \emph{indeterminate strings}. In this paper we generalize string covers to the context of 2-dimensional data, such as images. We show how they can be used for the extraction of textures from images and identification of primitive cells in lattice data. This has interesting applications in image compression, procedural terrain generation and crystallography

    Ready Exerciser One: Effects of Music and Virtual Reality on Cycle Ergometer Exercise

    Get PDF
    © 2020 The Authors. Objectives Physical inactivity remains a major global health concern, and researchers have been encouraged to explore the role of technology in the promotion of physical activity. Technologies that deliver audio‐visual stimuli are frequently applied in the exercise domain. However, there is a paucity of research that examines the efficacy of modern virtual reality (VR) technology in this context. We investigated the effects of VR and music on affective, perceptual, enjoyment, and cardiac responses to aerobic‐type exercise. Design A fully counterbalanced, within‐subjects design was employed. Methods A convenience sample of recreationally active adult volunteers (N = 24) completed a 12‐min protocol during which they exercised under music, VR, VR‐with‐music, and control conditions. Results Analyses indicated a Condition × Time interaction for affective valence and perceived activation. Moreover, a main effect of condition emerged for state attention and perceived enjoyment. The VR and VR‐with‐music conditions elicited the most positive affective valence, highest levels of perceived activation, greatest number of dissociative thoughts, and most exercise enjoyment. Differences between these two conditions were negligible across the breadth of dependent variables. Conclusions The present findings illustrate the efficacy of modern VR technology in the exercise context, applied both with and without musical accompaniment. Additional research is required to assess the degree to which the findings are replicable among sedentary or ageing segments of the population. Given the emerging support pertaining to a positive relationship between affective responses and exercise adherence, VR technology should be considered as a means by which to promote an enjoyable exercise experience

    On the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within

    Full text link
    In this chapter, we analyze the steady-state microscale fluid--structure interaction (FSI) between a generalized Newtonian fluid and a hyperelastic tube. Physiological flows, especially in hemodynamics, serve as primary examples of such FSI phenomena. The small scale of the physical system renders the flow field, under the power-law rheological model, amenable to a closed-form solution using the lubrication approximation. On the other hand, negligible shear stresses on the walls of a long vessel allow the structure to be treated as a pressure vessel. The constitutive equation for the microtube is prescribed via the strain energy functional for an incompressible, isotropic Mooney--Rivlin material. We employ both the thin- and thick-walled formulations of the pressure vessel theory, and derive the static relation between the pressure load and the deformation of the structure. We harness the latter to determine the flow rate--pressure drop relationship for non-Newtonian flow in thin- and thick-walled soft hyperelastic microtubes. Through illustrative examples, we discuss how a hyperelastic tube supports the same pressure load as a linearly elastic tube with smaller deformation, thus requiring a higher pressure drop across itself to maintain a fixed flow rate.Comment: 19 pages, 3 figures, Springer book class; v2: minor revisions, final form of invited contribution to the Springer volume entitled "Dynamical Processes in Generalized Continua and Structures" (in honour of Academician D.I. Indeitsev), eds. H. Altenbach, A. Belyaev, V. A. Eremeyev, A. Krivtsov and A. V. Porubo

    Study of the Epigenetic Signals in the Human Genome

    Get PDF
    Epigenetics can be defined as changes in the genome that are inherited during cell division, but without direct modification of the DNA sequence. These genomic changes are supported by three major epigenetic mechanisms: DNA methylation, histone modification and small RNAs. Different epigenetic marks function regulate gene transcription, some of them when altered can trigger various diseases such as cancer. This work is focus on the epigenetic signals in the human genome, studding the dependency between the nucleotide word context and the occurrence of epigenomic marking. We based our study on histone epigenomes available in the NIH Roadmap Epigenomics Mapping Consortium database that contains various types of cells and various types of tissues. We compared genomic contexts of epigenetic marking among chromosomes and among epigenomes. We included a control scenario, the DNA sequence regions without epigenetic marking. We identified significant differences between context occurrence of control and epigenetic regions. The genomic words in epigenetic marking regions present significant association with chromosome and histone modification type

    Fluctuations in granular gases

    Full text link
    A driven granular material, e.g. a vibrated box full of sand, is a stationary system which may be very far from equilibrium. The standard equilibrium statistical mechanics is therefore inadequate to describe fluctuations in such a system. Here we present numerical and analytical results concerning energy and injected power fluctuations. In the first part we explain how the study of the probability density function (pdf) of the fluctuations of total energy is related to the characterization of velocity correlations. Two different regimes are addressed: the gas driven at the boundaries and the homogeneously driven gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of homogeneity in hydrodynamics profiles, even in the absence of velocity correlations, the fluctuations of total energy are non-trivial and may lead to erroneous conclusions about the role of correlations. In the second part of the chapter we take into consideration the fluctuations of injected power in driven granular gas models. Recently, real and numerical experiments have been interpreted as evidence that the fluctuations of power injection seem to satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an alternative interpretation of such results which invalidates the Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and using techniques from large deviation theory, the general validity of a Fluctuation Relation for power injection in driven granular gases is questioned. Finally a functional is defined using the Lebowitz-Spohn approach for Markov processes applied to the linear inelastic Boltzmann equation relevant to describe the motion of a tracer particle. Such a functional results to be different from injected power and to satisfy a Fluctuation Relation.Comment: 40 pages, 18 figure

    Defining the functional traits that drive bacterial decomposer community productivity

    Get PDF
    Microbial communities are essential to a wide range of ecologically and industrially important processes. To control or predict how these communities function, we require a better understanding of the factors which influence microbial community productivity. Here, we combine functional resource use assays with a biodiversity–ecosystem functioning (BEF) experiment to determine whether the functional traits of constituent species can be used to predict community productivity. We quantified the abilities of 12 bacterial species to metabolise components of lignocellulose and then assembled these species into communities of varying diversity and composition to measure their productivity growing on lignocellulose, a complex natural substrate. A positive relationship between diversity and community productivity was caused by a selection effect whereby more diverse communities were more likely to contain two species that significantly improved community productivity. Analysis of functional traits revealed that the observed selection effect was primarily driven by the abilities of these species to degrade ÎČ-glucan. Our results indicate that by identifying the key functional traits underlying microbial community productivity we could improve industrial bioprocessing of complex natural substrates

    Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars

    Get PDF
    Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, ή13C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar’s environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa

    Three-Dimensional Structure of N-Terminal Domain of DnaB Helicase and Helicase-Primase Interactions in Helicobacter pylori

    Get PDF
    Replication initiation is a crucial step in genome duplication and homohexameric DnaB helicase plays a central role in the replication initiation process by unwinding the duplex DNA and interacting with several other proteins during the process of replication. N-terminal domain of DnaB is critical for helicase activity and for DnaG primase interactions. We present here the crystal structure of the N-terminal domain (NTD) of H. pylori DnaB (HpDnaB) helicase at 2.2 Å resolution and compare the structural differences among helicases and correlate with the functional differences. The structural details of NTD suggest that the linker region between NTD and C-terminal helicase domain plays a vital role in accurate assembly of NTD dimers. The sequence analysis of the linker regions from several helicases reveals that they should form four helix bundles. We also report the characterization of H. pylori DnaG primase and study the helicase-primase interactions, where HpDnaG primase stimulates DNA unwinding activity of HpDnaB suggesting presence of helicase-primase cohort at the replication fork. The protein-protein interaction study of C-terminal domain of primase and different deletion constructs of helicase suggests that linker is essential for proper conformation of NTD to interact strongly with HpDnaG. The surface charge distribution on the primase binding surface of NTDs of various helicases suggests that DnaB-DnaG interaction and stability of the complex is most probably charge dependent. Structure of the linker and helicase-primase interactions indicate that HpDnaB differs greatly from E.coli DnaB despite both belong to gram negative bacteria
    • 

    corecore