866 research outputs found
An output-sensitive algorithm for the minimization of 2-dimensional String Covers
String covers are a powerful tool for analyzing the quasi-periodicity of
1-dimensional data and find applications in automata theory, computational
biology, coding and the analysis of transactional data. A \emph{cover} of a
string is a string for which every letter of lies within some
occurrence of . String covers have been generalized in many ways, leading to
\emph{k-covers}, \emph{-covers}, \emph{approximate covers} and were
studied in different contexts such as \emph{indeterminate strings}.
In this paper we generalize string covers to the context of 2-dimensional
data, such as images. We show how they can be used for the extraction of
textures from images and identification of primitive cells in lattice data.
This has interesting applications in image compression, procedural terrain
generation and crystallography
On the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within
In this chapter, we analyze the steady-state microscale fluid--structure
interaction (FSI) between a generalized Newtonian fluid and a hyperelastic
tube. Physiological flows, especially in hemodynamics, serve as primary
examples of such FSI phenomena. The small scale of the physical system renders
the flow field, under the power-law rheological model, amenable to a
closed-form solution using the lubrication approximation. On the other hand,
negligible shear stresses on the walls of a long vessel allow the structure to
be treated as a pressure vessel. The constitutive equation for the microtube is
prescribed via the strain energy functional for an incompressible, isotropic
Mooney--Rivlin material. We employ both the thin- and thick-walled formulations
of the pressure vessel theory, and derive the static relation between the
pressure load and the deformation of the structure. We harness the latter to
determine the flow rate--pressure drop relationship for non-Newtonian flow in
thin- and thick-walled soft hyperelastic microtubes. Through illustrative
examples, we discuss how a hyperelastic tube supports the same pressure load as
a linearly elastic tube with smaller deformation, thus requiring a higher
pressure drop across itself to maintain a fixed flow rate.Comment: 19 pages, 3 figures, Springer book class; v2: minor revisions, final
form of invited contribution to the Springer volume entitled "Dynamical
Processes in Generalized Continua and Structures" (in honour of Academician
D.I. Indeitsev), eds. H. Altenbach, A. Belyaev, V. A. Eremeyev, A. Krivtsov
and A. V. Porubo
Fluctuations in granular gases
A driven granular material, e.g. a vibrated box full of sand, is a stationary
system which may be very far from equilibrium. The standard equilibrium
statistical mechanics is therefore inadequate to describe fluctuations in such
a system. Here we present numerical and analytical results concerning energy
and injected power fluctuations. In the first part we explain how the study of
the probability density function (pdf) of the fluctuations of total energy is
related to the characterization of velocity correlations. Two different regimes
are addressed: the gas driven at the boundaries and the homogeneously driven
gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of
homogeneity in hydrodynamics profiles, even in the absence of velocity
correlations, the fluctuations of total energy are non-trivial and may lead to
erroneous conclusions about the role of correlations. In the second part of the
chapter we take into consideration the fluctuations of injected power in driven
granular gas models. Recently, real and numerical experiments have been
interpreted as evidence that the fluctuations of power injection seem to
satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an
alternative interpretation of such results which invalidates the
Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and
using techniques from large deviation theory, the general validity of a
Fluctuation Relation for power injection in driven granular gases is
questioned. Finally a functional is defined using the Lebowitz-Spohn approach
for Markov processes applied to the linear inelastic Boltzmann equation
relevant to describe the motion of a tracer particle. Such a functional results
to be different from injected power and to satisfy a Fluctuation Relation.Comment: 40 pages, 18 figure
Defining the functional traits that drive bacterial decomposer community productivity
Microbial communities are essential to a wide range of ecologically and industrially important processes. To control or predict how these communities function, we require a better understanding of the factors which influence microbial community productivity. Here, we combine functional resource use assays with a biodiversity–ecosystem functioning (BEF) experiment to determine whether the functional traits of constituent species can be used to predict community productivity. We quantified the abilities of 12 bacterial species to metabolise components of lignocellulose and then assembled these species into communities of varying diversity and composition to measure their productivity growing on lignocellulose, a complex natural substrate. A positive relationship between diversity and community productivity was caused by a selection effect whereby more diverse communities were more likely to contain two species that significantly improved community productivity. Analysis of functional traits revealed that the observed selection effect was primarily driven by the abilities of these species to degrade β-glucan. Our results indicate that by identifying the key functional traits underlying microbial community productivity we could improve industrial bioprocessing of complex natural substrates
Entrepreneurial-intention constraint model: A comparative analysis among post-graduate management students in India, Singapore and Malaysia
YesAlthough literature on entrepreneurship has increasingly focused on intention-based models, not much emphasis has been laid on understanding the combined effect of contextual and situational factors along with support of university environment on the formation of entrepreneurial intention among students. In an effort to make up for this shortfall, by taking Theory of Planned Behavior as basic framework, the present study seeks to understand the influence of three of the most important factors, viz. (a) endogenous barriers, (b) exogenous environment, and (c) university environment and support on the entrepreneurial intention among management students. The study sample consisted of 1,097 students, wherein 526 students were from India, 252 from Singapore, and 319 were from Malaysia. The results indicates that along with positive attitude and perceived behavioral control that directly influences entrepreneurial intention, university environment and support and exogenous environment also have an indirect but significant impact on shaping of entrepreneurial intention among students. With this, it was found that exogenous environment was found to have a negative relationship with both attitude towards behavior and perceived behavioral control for all three countries.The full-text of this article will be released for public view at the end of the publisher embargo on 2 Jun 2018
Dopamine, affordance and active inference.
The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal) model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level
Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars
Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ13C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar’s environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa
Slip and hall current effects on Jeffrey fluid suspension flow in a peristaltic hydromagnetic blood micropump
The magnetic properties of blood allow it to be manipulated with an electromagnetic field. Electromagnetic blood flow pumps are a robust technology which provide more elegant and sustainable performance compared with conventional medical pumps. Blood is a complex multi-phase suspension with non-Newtonian characteristics which are significant in micro-scale transport. Motivated by such applications, in the present article a mathematical model is developed for magnetohydrodynamic (MHD) pumping of blood in a deformable channel with peristaltic waves. A Jeffery’s viscoelastic formulation is employed for the rheology of blood. A twophase fluid-particle (“dusty”) model is utilized to better simulate suspension characteristics (plasma and erythrocytes). Hall current and wall slip effects are incorporated to achieve more realistic representation of actual systems. A two-dimensional asymmetric channel with dissimilar peristaltic wave trains propagating along the walls is considered. The governing conservation equations for mass, fluid and particle momentum are formulated with appropriate boundary conditions. The model is simplified using of long wavelength and creeping flow approximations. The model is also transformed from the fixed frame to the wave frame and rendered non-dimensional. Analytical solutions are derived. The resulting boundary value problem is solved analytically and exact expressions are derived for the fluid velocity, particulate velocity, fluid/particle fluid and particulate volumetric flow rates, axial pressure gradient, pressure rise and skin friction distributions are evaluated in detail. Increasing Hall current parameter reduces bolus growth in the channel, particle phase velocity and pressure difference in the augmented pumping region whereas it increases fluid phase velocity, axial pressure gradient and pressure difference in the pumping region. Increasing the hydrodynamic slip parameter accelerates both particulate and fluid phase flow at and close to the channel walls, enhances wall skin friction, boosts pressure difference in the augmented pumping region and increases bolus magnitudes. Increasing viscoelastic parameter (stress relaxation time to retardation time ratio) decelerates the fluid phase flow, accelerates the particle phase flow, decreases axial pressure gradient, elevates pressure difference in the augmented pumping region and reduces pressure difference in the pumping region. Increasing drag particulate suspension parameter decelerates the particle phase velocity, accelerates the fluid phase velocity, strongly elevates axial pressure gradient and reduces pressure difference (across one wavelength) in the augmented pumping region. Increasing particulate volume fraction density enhances bolus magnitudes in both the upper and lower zones of the channel and elevates pressure rise in the augmented pumping region
Ready Exerciser One: Effects of Music and Virtual Reality on Cycle Ergometer Exercise
© 2020 The Authors.
Objectives
Physical inactivity remains a major global health concern, and researchers have been encouraged to explore the role of technology in the promotion of physical activity. Technologies that deliver audio‐visual stimuli are frequently applied in the exercise domain. However, there is a paucity of research that examines the efficacy of modern virtual reality (VR) technology in this context. We investigated the effects of VR and music on affective, perceptual, enjoyment, and cardiac responses to aerobic‐type exercise.
Design
A fully counterbalanced, within‐subjects design was employed.
Methods
A convenience sample of recreationally active adult volunteers (N = 24) completed a 12‐min protocol during which they exercised under music, VR, VR‐with‐music, and control conditions.
Results
Analyses indicated a Condition × Time interaction for affective valence and perceived activation. Moreover, a main effect of condition emerged for state attention and perceived enjoyment. The VR and VR‐with‐music conditions elicited the most positive affective valence, highest levels of perceived activation, greatest number of dissociative thoughts, and most exercise enjoyment. Differences between these two conditions were negligible across the breadth of dependent variables.
Conclusions
The present findings illustrate the efficacy of modern VR technology in the exercise context, applied both with and without musical accompaniment. Additional research is required to assess the degree to which the findings are replicable among sedentary or ageing segments of the population. Given the emerging support pertaining to a positive relationship between affective responses and exercise adherence, VR technology should be considered as a means by which to promote an enjoyable exercise experience
Police performance measurement: an annotated bibliography
This study provides information to assist those involved in performance measurement in police organisations. The strategies used to identify the literature are described. Thematic sections cover; general overviews; methodological issues; performance management in other industries; national, international and cross-national studies; frameworks (e.g. Compstat; the Balanced Scorecard); criticisms (particularly unintended consequences); crime-specific measures; practitioner guides; performance evaluation of individual staff; police department plans and evaluations; annotated bibliographies in related areas, and; other literature. Our discussion offers two conclusions: the measures best aligned with performance are typically more expensive, while most operational data should only provide contextual information; the philosophy of open governance should be pursued to promote transparency, accountability and communication to improve police performance
- …
