77 research outputs found

    Increased severity of glomerulonephritis in C-C chemokine receptor 2 knockout mice

    Get PDF
    Increased severity of glomerulonephritis in C-C chemokine receptor 2 knockout mice.BackgroundThe C-C chemokine receptor 2 (CCR2) is expressed on monocytes and facilitates monocyte migration. CCR2 is a prominent receptor for monocyte chemoattractant protein-1 (MCP-1). This chemokine recruits monocytes to sites of inflammation. It has been suggested that CCR2 and its ligand, MCP-1, play a role in the pathogenesis of glomerulonephritis. The goal of this study was to determine the contribution of CCR2 in a murine model of accelerated nephrotoxic nephritis. We measured the extent of development of renal disease in CCR2 wild-type and knockout mice after the administration of antiglomerular basement membrane antibody.MethodsEight groups of animals were treated (N = 10 per group). Four days after IgG immunization, CCR2 wild-type and knockout mice received control serum or nephrotoxic serum. The urinary protein/creatinine ratio was measured on days 1 and 3; plasma and kidneys were collected on days 4 and 7. Kidneys were evaluated by light microscopy, immunohistochemistry, and immunofluorescence. The genotype of mice was confirmed by tissue analysis.ResultsProtective effects of CCR2 knockout on the urinary protein/creatinine ratio were observed on day 1, as values for this parameter were significantly lower (35 ± 3.6) than in nephritic wild-type mice (50 ± 6.8). There was a marked increase in proteinuria in nephritic wild-type mice on day 1 compared with vehicle-treated, wild-type animals (5 ± 1.0). On day 3, the ameliorative effects of CCR2 knockout were not observed; the increase in the urinary protein/creatinine ratio was similar in nephritic CCR2 wild-type (92 ± 11.2) and knockout mice (102 ± 9.2). Plasma markers of disease were evaluated on days 4 and 7. At these time points, there were no beneficial effects of CCR2 receptor knockout on plasma levels of urea nitrogen, creatinine, albumin, or cholesterol. On day 7, blood urea nitrogen (248 ± 19.9 mg/dL) and plasma cholesterol were higher in nephritic CCR2 knockout mice than in wild-type mice (142 ± 41.7 mg/dL) that received nephrotoxic serum. Histopathologic injury was more severe in nephritic CCR2 knockout mice than nephritic wild-type mice on day 4 (3.1 ± 0.3 vs. 2.0 ± 0.3) and day 7 (3.6 ± 0.2 vs. 2.9 ± 0.3). By immunohistochemical analysis at day 4, there were significantly fewer mac-2–positive cells, representative of macrophages in the glomeruli of nephritic CCR2 knockout (2.1 ± 0.6) mice than nephritic wild-type (3.9 ± 0.5) animals. By indirect immunofluorescence, there was a moderate, diffuse linear IgG deposition of equivalent severity present in glomeruli of both wild-type and CCR2 knockout nephritic mice.ConclusionThese results suggest that our strategy was successful in reducing macrophage infiltration, but this model of glomerulonephritis is not solely dependent on the presence of CCR2 for progression of disease. After a transient ameliorative effect on proteinuria, CCR2 knockout led to more severe injury in nephritic mice. This raises the intriguing possibility that a CCR2 gene product ameliorates glomerulonephritis in this murine model. Although effects that occur in chemokine knockout mice are not equivalent to those expected with prolonged use of a chemokine antagonist, this study may nevertheless have implications for consideration of long-term use of chemokine antagonists in renal disease

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    A novel Alzheimer disease locus located near the gene encoding tau protein

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAPOE ε4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE ε4+ (10 352 cases and 9207 controls) and APOE ε4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE ε4 status. Suggestive associations (P<1 × 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE ε4+: 1250 cases and 536 controls; APOE ε4-: 718 cases and 1699 controls). Among APOE ε4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ε4+ subjects (CR1 and CLU) or APOE ε4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P≤1.3 × 10-8), frontal cortex (P≤1.3 × 10-9) and temporal cortex (P≤1.2 × 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 × 10-6) and temporal cortex (P=2.6 × 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE ε4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted

    Genomic assessment of quarantine measures to prevent SARS-CoV-2 importation and transmission

    Get PDF
    Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16–20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant
    corecore