433 research outputs found
The dynamics of quasi-periodic ripples in the high-latitude F-region
This study extends the investigation of quasi-periodic ripples in the F-region electron content reported by Birch and Hargreaves (2020a) to determine their flow velocity and wavelength, using data from the EISCAT Svalbard radars (the 42m antenna being field-aligned and the 32m scanning in a circular pattern at a fixed angle from the field). The ripples were extracted from the 42m electron content between altitudes 213 and 389 km in the noon and midnight sectors using a bandpass filter which reduces the noise component while removing long-term trends. These ripples were found to have an average periodicity of about 21 min in the noon sector and 27 min at night. Using the 32m line-of-sight velocity data, they were also found to propagate in the noon sector at about 467 m/s in a westerly direction with a wavelength of 581 km, and in the night sector at about 283 m/s in a southerly direction with a wavelength of 454 km. The directions compare favourably with modelled plasma flows from the SuperDARN network of coherent scatter radars
Synoptic and Mesoscale Dynamics of Cold Surges over the South China Sea and their Control on Extreme Rainfall
We investigate the synoptic and mesoscale dynamics of two wet and two dry cold surges in January 2021 using a combination of observations, reanalysis, and convective-scale model forecasts from the Met Office Unified Model (MetUM). We focus on the wet surges, and particularly the wettest days which are locally extreme over Singapore and the surrounding region (i.e., the daily mean and area-averaged rainfall over 20 years exceeds the 99th percentile). On the large scale, the wet surges are characterized by an anomalously strong anticyclone over Siberia prior to their onset. The anticyclone and resultant surge winds are stronger than those of the dry surges. There is also a relatively moist (dry) environment prior to the onset of the wet (dry) surges, with the Madden-Julian Oscillation (MJO) being in Phase 3 (Phase 6). On the mesoscale, the combination of the cold surge and a local tropical low produce strong, moist north-easterly winds and convection over the Singapore region. The equatorward advection of positive anomalies of equivalent potential temperature resembles a weak gravity-current-like structure at its head, although the spatial scale is much too large for a gravity current. There is a moist bias in the model forecasts, although the precipitation is underestimated regionally during the wet surges and particularly on the extreme rainfall days. Overall, the model forecasts perform well synoptically but not in the details of mesoscale convection
A terminal assessment of stages theory : introducing a dynamic states approach to entrepreneurship
Stages of Growth models were the most frequent theoretical approach to understanding entrepreneurial business growth from 1962 to 2006; they built on the growth imperative and developmental models of that time. An analysis of the universe of such models (N=104) published in the management literature shows no consensus on basic constructs of the approach, nor is there any empirical confirmations of stages theory. However, by changing two propositions of the stages models, a new dynamic states approach is derived. The dynamic states approach has far greater explanatory power than its precursor, and is compatible with leading edge research in entrepreneurship
Helioseismology of Sunspots: A Case Study of NOAA Region 9787
Various methods of helioseismology are used to study the subsurface
properties of the sunspot in NOAA Active Region 9787. This sunspot was chosen
because it is axisymmetric, shows little evolution during 20-28 January 2002,
and was observed continuously by the MDI/SOHO instrument. (...) Wave travel
times and mode frequencies are affected by the sunspot. In most cases, wave
packets that propagate through the sunspot have reduced travel times. At short
travel distances, however, the sign of the travel-time shifts appears to depend
sensitively on how the data are processed and, in particular, on filtering in
frequency-wavenumber space. We carry out two linear inversions for wave speed:
one using travel-times and phase-speed filters and the other one using mode
frequencies from ring analysis. These two inversions give subsurface wave-speed
profiles with opposite signs and different amplitudes. (...) From this study of
AR9787, we conclude that we are currently unable to provide a unified
description of the subsurface structure and dynamics of the sunspot.Comment: 28 pages, 18 figure
Structure and Dynamics of Liquid Iron under Earth's Core Conditions
First-principles molecular dynamics simulations based on density-functional
theory and the projector augmented wave (PAW) technique have been used to study
the structural and dynamical properties of liquid iron under Earth's core
conditions. As evidence for the accuracy of the techniques, we present PAW
results for a range of solid-state properties of low- and high-pressure iron,
and compare them with experimental values and the results of other
first-principles calculations. In the liquid-state simulations, we address
particular effort to the study of finite-size effects, Brillouin-zone sampling
and other sources of technical error. Results for the radial distribution
function, the diffusion coefficient and the shear viscosity are presented for a
wide range of thermodynamic states relevant to the Earth's core. Throughout
this range, liquid iron is a close-packed simple liquid with a diffusion
coefficient and viscosity similar to those of typical simple liquids under
ambient conditions.Comment: 13 pages, 8 figure
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
A deep dive into the ecology of Gamay (Botany Bay, Australia): current knowledge and future priorities for this highly modified coastal waterway
Context: Gamay is a coastal waterway of immense social, cultural and ecological value. Since European settlement, it has become a hub for industrialisation and human modification. There is growing desire for ecosystem-level management of urban waterways, but such efforts are often challenged by a lack of integrated knowledge.
Aim and methods: We systematically reviewed published literature and traditional ecological knowledge (TEK), and consulted scientists to produce a review of Gamay that synthesises published knowledge of Gamayâs aquatic ecosystem to identify knowledge gaps and future research opportunities.
Key results: We found 577 published resources on Gamay, of which over 70% focused on ecology. Intertidal rocky shores were the most studied habitat, focusing on invertebrate communities. Few studies considered multiple habitats or taxa. Studies investigating cumulative human impacts, long-term trends and habitat connectivity are lacking, and the broader ecological role of artificial substrate as habitat in Gamay is poorly understood. TEK of Gamay remains a significant knowledge gap. Habitat restoration has shown promising results and could provide opportunities to improve affected habitats in the future.
Conclusion and implications: This review highlights the extensive amount of knowledge that exists for Gamay, but also identifies key gaps that need to be filled for effective management
Tamoxifen and risk of contralateral breast cancer for BRCA1 and BRCA2 mutation carriers
Purpose To determine whether adjuvant tamoxifen treatment for breast cancer (BC) is associated with reduced contralateral breast cancer (CBC) risk for BRCA1 and/or BRCA2 mutation carriers. Methods Analysis of pooled observational cohort data, self-reported at enrollment and at follow-up from the International BRCA1, and BRCA2 Carrier Cohort Study, Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, and Breast Cancer Family Registry. Eligible women were BRCA1 and BRCA2 mutation carriers diagnosed with unilateral BC since 1970 and no other invasive cancer or tamoxifen use before first BC. Hazard ratios (HRs) for CBC associated with tamoxifen use were estimated using Cox regression, adjusting for year and age of diagnosis, country, and bilateral oophorectomy and censoring at contralateral mastectomy, death, or loss to follow-up. Results Of 1,583 BRCA1 and 881 BRCA2 mutation carriers, 383 (24%) and 454 (52%), respectively, took tamoxifen after first BC d
- âŠ