120 research outputs found

    Enhanced Meta-Learning for Cross-lingual Named Entity Recognition with Minimal Resources

    Full text link
    For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.Comment: This paper is accepted by AAAI2020. Code is available at https://github.com/microsoft/vert-papers/tree/master/papers/Meta-Cros

    Intracellular ROS Mediates Gas Plasma-Facilitated Cellular Transfection in 2D and 3D Cultures

    Get PDF
    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models

    In Situ OH Generation From O2- and H2O2 Plays a Critical Role in Plasma Induced Cell Death

    Get PDF
    Reactive oxygen and nitrogen species produced by cold atmospheric plasma (CAP) are considered to be the most important species for biomedical applications, including cancer treatment. However, it is not known which species exert the greatest biological effects, and the nature of their interactions with tumor cells remains ill-defined. These questions were addressed in the present study by exposing human mesenchymal stromal and LP-1 cells to reactive oxygen and nitrogen species produced by CAP and evaluating cell viability. Superoxide anion (O2-) and hydrogen peroxide (H2O2) were the two major species present in plasma, but their respective concentrations were not sufficient to cause cell death when used in isolation; however, in the presence of iron, both species enhanced the cell death-inducing effects of plasma. We propose that iron containing proteins in cells catalyze O2- and H2O2 into the highly reactive OH radical that can induce cell death. The results demonstrate how reactive species are transferred to liquid and converted into the OH radical to mediate cytotoxicity and provide mechanistic insight into the molecular mechanisms underlying tumor cell death by plasma treatment

    Estimates of daily ground-level NO2 concentrations in China based on big data and machine learning approaches

    Full text link
    Nitrogen dioxide (NO2) is one of the most important atmospheric pollutants. However, current ground-level NO2 concentration data are lack of either high-resolution coverage or full coverage national wide, due to the poor quality of source data and the computing power of the models. To our knowledge, this study is the first to estimate the ground-level NO2 concentration in China with national coverage as well as relatively high spatiotemporal resolution (0.25 degree; daily intervals) over the newest past 6 years (2013-2018). We advanced a Random Forest model integrated K-means (RF-K) for the estimates with multi-source parameters. Besides meteorological parameters, satellite retrievals parameters, we also, for the first time, introduce socio-economic parameters to assess the impact by human activities. The results show that: (1) the RF-K model we developed shows better prediction performance than other models, with cross-validation R2 = 0.64 (MAPE = 34.78%). (2) The annual average concentration of NO2 in China showed a weak increasing trend . While in the economic zones such as Beijing-Tianjin-Hebei region, Yangtze River Delta, and Pearl River Delta, the NO2 concentration there even decreased or remained unchanged, especially in spring. Our dataset has verified that pollutant controlling targets have been achieved in these areas. With mapping daily nationwide ground-level NO2 concentrations, this study provides timely data with high quality for air quality management for China. We provide a universal model framework to quickly generate a timely national atmospheric pollutants concentration map with a high spatial-temporal resolution, based on improved machine learning methods

    COVID-19 causes record decline in global CO2 emissions

    Get PDF
    The considerable cessation of human activities during the COVID-19 pandemic has affected global energy use and CO2 emissions. Here we show the unprecedented decrease in global fossil CO2 emissions from January to April 2020 was of 7.8% (938 Mt CO2 with a +6.8% of 2-{\sigma} uncertainty) when compared with the period last year. In addition other emerging estimates of COVID impacts based on monthly energy supply or estimated parameters, this study contributes to another step that constructed the near-real-time daily CO2 emission inventories based on activity from power generation (for 29 countries), industry (for 73 countries), road transportation (for 406 cities), aviation and maritime transportation and commercial and residential sectors emissions (for 206 countries). The estimates distinguished the decline of CO2 due to COVID-19 from the daily, weekly and seasonal variations as well as the holiday events. The COVID-related decreases in CO2 emissions in road transportation (340.4 Mt CO2, -15.5%), power (292.5 Mt CO2, -6.4% compared to 2019), industry (136.2 Mt CO2, -4.4%), aviation (92.8 Mt CO2, -28.9%), residential (43.4 Mt CO2, -2.7%), and international shipping (35.9Mt CO2, -15%). Regionally, decreases in China were the largest and earliest (234.5 Mt CO2,-6.9%), followed by Europe (EU-27 & UK) (138.3 Mt CO2, -12.0%) and the U.S. (162.4 Mt CO2, -9.5%). The declines of CO2 are consistent with regional nitrogen oxides concentrations observed by satellites and ground-based networks, but the calculated signal of emissions decreases (about 1Gt CO2) will have little impacts (less than 0.13ppm by April 30, 2020) on the overserved global CO2 concertation. However, with observed fast CO2 recovery in China and partial re-opening globally, our findings suggest the longer-term effects on CO2 emissions are unknown and should be carefully monitored using multiple measures

    Carbon Monitor Cities, near-real-time daily estimates of CO2 emissions from 1500 cities worldwide

    Full text link
    Building on near-real-time and spatially explicit estimates of daily carbon dioxide (CO2) emissions, here we present and analyze a new city-level dataset of fossil fuel and cement emissions. Carbon Monitor Cities provides daily, city-level estimates of emissions from January 2019 through December 2021 for 1500 cities in 46 countries, and disaggregates five sectors: power generation, residential (buildings), industry, ground transportation, and aviation. The goal of this dataset is to improve the timeliness and temporal resolution of city-level emission inventories and includes estimates for both functional urban areas and city administrative areas that are consistent with global and regional totals. Comparisons with other datasets (i.e. CEADs, MEIC, Vulcan, and CDP) were performed, and we estimate the overall uncertainty to be 21.7%. Carbon Monitor Cities is a near-real-time, city-level emission dataset that includes cities around the world, including the first estimates for many cities in low-income countries

    Near-real-time monitoring of global COâ‚‚ emissions reveals the effects of the COVID-19 pandemic

    Get PDF
    The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO₂) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO₂ emissions (−1551 Mt CO₂) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially
    • …
    corecore