122 research outputs found

    Tobacco smoking is associated with DNA methylation of diabetes susceptibility genes.

    Get PDF
    AIMS/HYPOTHESIS: Tobacco smoking, a risk factor for diabetes, is an established modifier of DNA methylation. We hypothesised that tobacco smoking modifies DNA methylation of genes previously identified for diabetes. METHODS: We annotated CpG sites available on the Illumina Human Methylation 450K array to diabetes genes previously identified by genome-wide association studies (GWAS), and investigated them for an association with smoking by comparing current to never smokers. The discovery study consisted of 630 individuals (Bonferroni-corrected p = 1.4 × 10(-5)), and we sought replication in an independent sample of 674 individuals. The replicated sites were tested for association with nearby genetic variants and gene expression and fasting glucose and insulin levels. RESULTS: We annotated 3,620 CpG sites to the genes identified in the GWAS on type 2 diabetes. Comparing current smokers to never smokers, we found 12 differentially methylated CpG sites, of which five replicated: cg23161492 within ANPEP (p = 1.3 × 10(-12)); cg26963277 (p = 1.2 × 10(-9)), cg01744331 (p = 8.0 × 10(-6)) and cg16556677 (p = 1.2 × 10(-5)) within KCNQ1 and cg03450842 (p = 3.1 × 10(-8)) within ZMIZ1. The effect of smoking on DNA methylation at the replicated CpG sites attenuated after smoking cessation. Increased DNA methylation at cg23161492 was associated with decreased gene expression levels of ANPEP (p = 8.9 × 10(-5)). rs231356-T, which was associated with hypomethylation of cg26963277 (KCNQ1), was associated with a higher odds of diabetes (OR 1.06, p = 1.3 × 10(-5)). Additionally, hypomethylation of cg26963277 was associated with lower fasting insulin levels (p = 0.04). CONCLUSIONS/INTERPRETATION: Tobacco smoking is associated with differential DNA methylation of the diabetes risk genes ANPEP, KCNQ1 and ZMIZ1. Our study highlights potential biological mechanisms connecting tobacco smoking to excess risk of type 2 diabetes

    Stigma narratives: LGBT transitions and identities in Malta

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2011 A B Academic Publishers.This article considers narratives of transition experiences of a group of Lesbian, Gay, Bisexual and Transgender (LGBT) young people in Malta. The article draws on Goffman's concept of stigma and uses this to explore transitions in a society that retains some traditional characteristics, particularly the code of honour and shame, although mediated by aspects of modernity. Interviews were undertaken with 15 young people with the goal of producing narratives. The article analyses the experience of stigma, its effects and how young people manage its consequences. It concludes by drawing attention to the pervasive nature of stigma and the importance of structure, agency and reflexivity in youth transitions. In particular stigma remains an important feature of societies in which hetero-normative sexuality remains dominant

    Correction for both common and rare cell types in blood is important to identify genes that correlate with age

    Get PDF
    Background Aging is a multifactorial process that affects multiple tissues and is characterized by changes in homeostasis over time, leading to increased morbidity. Whole blood gene expression signatures have been associated with aging and have been used to gain information on its biological mechanisms, which are still not fully understood. However, blood is composed of many cell types whose proportions in blood vary with age. As a result, previously observed associations between gene expression levels and aging might be driven by cell type composition rather than intracellular aging mechanisms. To overcome this, previous aging studies already accounted for major cell types, but the possibility that the reported associations are false positives driven by less prevalent cell subtypes remains. Results Here, we compared the regression model from our previous work to an extended model that corrects for 33 additional white blood cell subtypes. Both models were applied to whole blood gene expression data from 3165 individuals belonging to the general population (age range of 18-81 years). We evaluated that the new model is a better fit for the data and it identified fewer genes associated with aging (625, compared to the 2808 of the initial model; P <= 2.5x10(-6)). Moreover, 511 genes (similar to 18% of the 2808 genes identified by the initial model) were found using both models, indicating that the other previously reported genes could be proxies for less abundant cell types. In particular, functional enrichment of the genes identified by the new model highlighted pathways and GO terms specifically associated with platelet activity. Conclusions We conclude that gene expression analyses in blood strongly benefit from correction for both common and rare blood cell types, and recommend using blood-cell count estimates as standard covariates when studying whole blood gene expression.Molecular Epidemiolog

    Alzheimer's disease pathology explains association between dementia with Lewy bodies and APOE-ε4/TOMM40 long poly-T repeat allele variants.

    Get PDF
    Introduction: The role of TOMM40-APOE 19q13.3 region variants is well documented in Alzheimer's disease (AD) but remains contentious in dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). Methods: We dissected genetic profiles within the TOMM40-APOE region in 451 individuals from four European brain banks, including DLB and PDD cases with/without neuropathological evidence of AD-related pathology and healthy controls. Results: TOMM40-L/APOE-ε4 alleles were associated with DLB (OR TOMM40 -L = 3.61; P value = 3.23 × 10-9; OR APOE -ε4 = 3.75; P value = 4.90 × 10-10) and earlier age at onset of DLB (HR TOMM40 -L = 1.33, P value = .031; HR APOE -ε4 = 1.46, P value = .004), but not with PDD. The TOMM40-L/APOE-ε4 effect was most pronounced in DLB individuals with concomitant AD pathology (OR TOMM40 -L = 4.40, P value = 1.15 × 10-6; OR APOE -ε4 = 5.65, P value = 2.97 × 10-8) but was not significant in DLB without AD. Meta-analyses combining all APOE-ε4 data in DLB confirmed our findings (ORDLB = 2.93, P value = 3.78 × 10-99; ORDLB+AD = 5.36, P value = 1.56 × 10-47). Discussion: APOE-ε4/TOMM40-L alleles increase susceptibility and risk of earlier DLB onset, an effect explained by concomitant AD-related pathology. These findings have important implications in future drug discovery and development efforts in DLB

    Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs

    Get PDF
    Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases

    Autosomal genetic variation is associated with DNA methylation in regions variably escaping X-chromosome inactivation

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Raw data were submitted to the European Genome-phenome Archive (EGA) under accession EGAS00001001077.X-chromosome inactivation (XCI), i.e., the inactivation of one of the female X chromosomes, restores equal expression of X-chromosomal genes between females and males. However, ~10% of genes show variable degrees of escape from XCI between females, although little is known about the causes of variable XCI. Using a discovery data-set of 1867 females and 1398 males and a replication sample of 3351 females, we show that genetic variation at three autosomal loci is associated with female-specific changes in X-chromosome methylation. Through cis-eQTL expression analysis, we map these loci to the genes SMCHD1/METTL4, TRIM6/HBG2, and ZSCAN9. Low-expression alleles of the loci are predominantly associated with mild hypomethylation of CpG islands near genes known to variably escape XCI, implicating the autosomal genes in variable XCI. Together, these results suggest a genetic basis for variable escape from XCI and highlight the potential of a population genomics approach to identify genes involved in XCI.This research was financially supported by several institutions: BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO, numbers 184.021.007 and 184.033.111); the UK Medical Research Council; Wellcome (www.wellcome.ac.uk; [grant number 102215/2/13/2 to ALSPAC]); the University of Bristol to ALSPAC; the UK Economic and Social Research Council (www.esrc.ac.uk; [ES/N000498/1] to CR); the UK Medical Research Council (www.mrc.ac.uk; grant numbers [MC_UU_12013/1, MC_UU_12013/2 to JLM, CR]); the Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria; the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ; the Wellcome Trust, Medical Research Council, European Union (EU), and the National Institute for Health Research (NIHR)- funded BioResource, Clinical Research Facility, and Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London

    DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases

    Get PDF
    We performed a multi-ethnic Epigenome Wide Association study on 22,774 individuals to describe the DNA methylation signature of chronic low-grade inflammation as measured by C-Reactive protein (CRP). We find 1,511 independent differentially methylated loci associated with CRP. These CpG sites show correlation structures across chromosomes, and are primarily situated in euchromatin, depleted in CpG islands. These genomic loci are predominantly situated in transcription factor binding sites and genomic enhancer regions. Mendelian randomization analysis suggests altered CpG methylation is a consequence of increased blood CRP levels. Mediation analysis reveals obesity and smoking as important underlying driving factors for changed CpG methylation. Finally, we find that an activated CpG signature significantly increases the risk for cardiometabolic diseases and COPD

    Pulmonary Function and Blood DNA Methylation: A Multiancestry Epigenome-Wide Association Meta-Analysis

    Get PDF
    Rationale: Methylation integrates factors present at birth and modifiable across the lifespan that can influence pulmonary function. Studies are limited in scope and replication. Objectives: To conduct large-scale epigenome-wide meta-analyses of blood DNA methylation and pulmonary function. Methods: Twelve cohorts analyzed associations of methylation at cytosine-phosphate-guanine probes (CpGs), using Illumina 450K or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We performed multiancestry epigenome-wide meta-analyses (total of 17,503 individuals; 14,761 European, 2,549 African, and 193 Hispanic/Latino ancestries) and interpreted results using integrative epigenomics. Measurements and Main Results: We identified 1,267 CpGs (1,042 genes) differentially methylated (false discovery rate, \u3c0.025) in relation to FEV1, FVC, or FEV1/FVC, including 1,240 novel and 73 also related to chronic obstructive pulmonary disease (1,787 cases). We found 294 CpGs unique to European or African ancestry and 395 CpGs unique to never or ever smokers. The majority of significant CpGs correlated with nearby gene expression in blood. Findings were enriched in key regulatory elements for gene function, including accessible chromatin elements, in both blood and lung. Sixty-nine implicated genes are targets of investigational or approved drugs. One example novel gene highlighted by integrative epigenomic and druggable target analysis is TNFRSF4. Mendelian randomization and colocalization analyses suggest that epigenome-wide association study signals capture causal regulatory genomic loci. Conclusions: We identified numerous novel loci differentially methylated in relation to pulmonary function; few were detected in large genome-wide association studies. Integrative analyses highlight functional relevance and potential therapeutic targets. This comprehensive discovery of potentially modifiable, novel lung function loci expands knowledge gained from genetic studies, providing insights into lung pathogenesis

    Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    Get PDF
    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 &times; 10-11 to 5.0 &times; 10-21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 &times; 10-6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation
    • …
    corecore