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Correction for both common and rare cell
types in blood is important to identify
genes that correlate with age
Damiano Pellegrino-Coppola1†, Annique Claringbould1†, Maartje Stutvoet1, BIOS Consortium, Dorret I. Boomsma2,
M. Arfan Ikram3, P. Eline Slagboom4, Harm-Jan Westra1 and Lude Franke1*

Abstract

Background: Aging is a multifactorial process that affects multiple tissues and is characterized by changes in
homeostasis over time, leading to increased morbidity. Whole blood gene expression signatures have been
associated with aging and have been used to gain information on its biological mechanisms, which are still not
fully understood. However, blood is composed of many cell types whose proportions in blood vary with age. As a
result, previously observed associations between gene expression levels and aging might be driven by cell type
composition rather than intracellular aging mechanisms. To overcome this, previous aging studies already
accounted for major cell types, but the possibility that the reported associations are false positives driven by less
prevalent cell subtypes remains.

Results: Here, we compared the regression model from our previous work to an extended model that corrects for
33 additional white blood cell subtypes. Both models were applied to whole blood gene expression data from
3165 individuals belonging to the general population (age range of 18–81 years). We evaluated that the new model
is a better fit for the data and it identified fewer genes associated with aging (625, compared to the 2808 of the
initial model; P ≤ 2.5⨯10−6). Moreover, 511 genes (~ 18% of the 2808 genes identified by the initial model) were
found using both models, indicating that the other previously reported genes could be proxies for less abundant
cell types. In particular, functional enrichment of the genes identified by the new model highlighted pathways and
GO terms specifically associated with platelet activity.

Conclusions: We conclude that gene expression analyses in blood strongly benefit from correction for both
common and rare blood cell types, and recommend using blood-cell count estimates as standard covariates when
studying whole blood gene expression.
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Background
Aging, defined as a time-dependent process characterized
by physical and cognitive decline, is one of the main risk
factors for autoimmune diseases, neurodegenerative dis-
eases, cancer and diabetes [1, 2]. To better understand this
process on a molecular level, changes in gene expression
during aging have been previously studied in whole blood
[3, 4]. However, blood contains many cell populations,
such as white blood cells (WBC) that can be divided into
granulocytes, lymphocytes and monocytes, and further
into more specific WBC subtypes [5]. Since the propor-
tions of these cell populations vary with age [6–9], it is ne-
cessary to correct for cell counts when using gene
expression from blood. Indeed, uncorrected gene expres-
sion data from whole blood has been shown before to be
biased by the gene expression pattern of the most abun-
dant cell type at the moment of sampling [10].
Here, to better identify cell-independent transcrip-

tional signatures during aging, we expanded the regres-
sion model that corrects for the number of WBC
presented in our previous work [3] (hereafter called Ini-
tial Model, IM), by taking into account additional spe-
cific WBC subtype counts in our new model (hereafter
called Extended Model, EM). We compared the per-
formance of these two models in a meta-analysis using

3165 human peripheral blood-derived RNA-seq samples
from four independent Dutch cohorts present in the
BIOS consortium, namely LifeLines Deep, Leiden Lon-
gevity Study, Netherlands Twin Registry and Rotterdam
Study [11–14]. Further, we show that the EM complies
with the assumptions of linear regression and provides a
better fit to the data as residuals decrease. Lastly, we
analyze the genes significantly up- and downregulated
by functional enrichment in order to understand to
which extent the models and cell correction can be used
to extract biological information regarding aging in a
general population.

Results
Improved cell correction is necessary to identify cell-
independent gene expression patterns
We performed an association of gene expression
changes with age using data from four Dutch cohorts
(Table S1). To take into account the differences in the
data, we conducted a meta-analysis across these cohorts.
We included only samples with all categorical covariates
reported, leaving a total of 3165 individuals (Table S1).
An overview of this study is presented in Fig. 1.
We tested 19,932 genes expressed in blood and ana-

lyzed the data by applying two models, the IM and the

Fig. 1 Overview of this study. 3165 complete samples from four BBMRI-NL BIOS consortium cohorts were used (see text for details). Gene
expression was related to age and selected covariates depending on the regression model applied (Initial or Extended). Genes significantly
associated with age were retrieved by applying Bonferroni correction (P ≤ 2.5⨯10−6) and gene lists obtained were compared to establish the
efficiency of the models and analyzed to get insights on the process of aging
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EM (see Methods and Fig. 1). The IM was presented pre-
viously [3]: it accounts for the main WBC types (number
of granulocytes, lymphocytes, monocytes), erythrocytes
and platelets, while our new model here presented, EM,
corrects for 33 additional WBC subtypes (see Methods,
Table S2 and S3, Fig. S1A). These additional WBC sub-
types were imputed with Decon-cell [15]. We observed
small but significant correlations between age and most
measured and imputed cell counts (Fig. S1B), presenting
evidence that adding WBC subtypes is beneficial for the
correction models. For example, different imputed cell
types, such as naïve CD8+ subtypes (IT50 and IT54
[16]), show a strong negative correlation with age when
considering both the overall (data not shown) and the
single cohorts (Fig. S1B).
Using the IM, we identified 1338 genes significantly

downregulated and 1470 upregulated with age after Bon-
ferroni correction (P ≤ 2.5⨯10−6) (Table S4 and Fig. 1).
The EM, however, reduced the number of results sub-
stantially: we identified 335 downregulated and 290 up-
regulated genes significantly associated with aging at the
same significance threshold (Table S4 and Fig. 1). This
decrease was expected, as many of the results from the
IM may have been driven by the composition of less
prominent cell types that were included in our EM.
While 511 out of 625 EM genes were also present in the
IM results, the 114 additional EM genes were only de-
tected after rigorous correction for cell types (Fig. S2).
To validate our results, we compared the number of
genes retrieved through our models with the 1497 genes
reported in our previous work [3] (gene set 1, GS1) and
the 481 genes identified by Lin and colleagues [4] (gene
set 2, GS2), a study that uses a slightly different correc-
tion model to study aging. As reported in Table S5, the
highest number of overlapping genes was found between
the IM and the GS1 (672, 24% of our 2808 IM genes).
Considering that the number of tested genes is different
(11,908 for GS1, based on a minimum level of expres-
sion across study cohorts, and 19,932 for IM, 10,890 in
common), this overlap is quite large. Moreover, all genes
had the same direction of association with age. These re-
sults are unsurprising, because we used the same previ-
ous correction model [3]. When comparing the EM
results with the GS1, the number of overlapping genes
decreased (172, 28% of our EM genes) but the majority
still had the same direction (98%). The lowest number of
overlapping genes was found between the EM results
and the GS2 (9 genes overlapping, 7 with the same dir-
ection). In general, differences in the number of overlap-
ping genes may result from: 1) differences in the model
used, 2) differences in the technical analyses performed
[17] and 3) differences between the genes used in the
discovery phase. Overall, the models show a good con-
servation of direction for overlapping genes, which

indicates that correcting for cell populations identifies
common whole blood gene expression patterns.

The extended model performs better than the initial
model
We next investigated whether both IM and EM met as-
sumptions of linear regression. To this end, we analyzed
the mean squared errors (MSE), the distribution of gene
expression residuals and their homoscedasticity after ap-
plying the IM and EM. We first analyzed the impact of
adding additional terms to our regression models on the
MSE. As expected, MSE values of the regressions de-
creased when applying the EM (total EM median MSE
value: 0.267, total IM median MSE value: 0.334)
(Fig. 2A-B and Table S6). We next created QQ-plots
and calculated the Pearson correlation coefficient be-
tween the observed and expected distributions to assess
normality. For most genes, including the 511 shared be-
tween IM and EM, we found that applying the EM re-
sulted in more normally distributed residual values and
the correlation values were higher (total EM median r
value: 0.995, total IM median r value: 0.994) (Fig. 2C-D,
Table S6 and S7). Lastly, we wanted to evaluate hetero-
skedasticity (i.e. the skewness on the distribution of re-
siduals), as this can indicate a relation between the error
and the explained variable, violating the model assump-
tions. For this purpose, we created a modified version of
both models that included all covariates with the excep-
tion of age and applied the four resulting models (IM,
EM, IM-age, EM-age) in each cohort. Then, we used the
rank-based Spearman correlations to correlate gene ex-
pression residuals with age [18, 19]. We checked the
normality of these Spearman ρ values and meta-analyzed
them across the cohorts (Fig. S3A). We observed that
the absolute correlations were smallest in the EM model
(EM median value: 9⨯10−3), and largest in the IM with-
out age (IM-age median value: 6⨯10−2) (Fig. 2E-F, Table
S6 and S7 and Fig. S3B). Large ρ values indicate a less
precise prediction and larger errors. In general, the EM
performs better than the IM, and it is specifically note-
worthy that the EM without age performs better than
the IM without age. Adding cell counts clearly improves
the prediction of gene expression values. These three
analyses indicate that the EM satisfies the assumptions
of linear regression better than the IM. Moreover,
adding cell counts as covariates improves reliable identi-
fication of aging-related genes in whole blood.

Single-cell RNA-seq data reveals the contribution of cell
types to gene expression during aging
Every cell type has its own gene expression pattern, so
the composition of blood cells influences the total gene
expression observed in whole blood RNA-seq data. To
test to which extent the aging-related genes found by
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Fig. 2 (See legend on next page.)
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the models were influenced by blood cell populations,
we investigated the mean expression of these aging-
related genes in single-cell RNA-seq (scRNA-seq) data
of 11 different blood cell types [20]. As shown in the t-
SNE plots (Fig. 3A and B), aging-related genes retrieved
through the IM have a propensity to be expressed in
specific parts of the t-SNE plot that match with cell
types, while EM genes maintain a lower and more stable
expression across cell types from donors with a wide age
range (Wilcoxon test, P ≤ 2.2⨯10−16, Fig. 3C and D),
suggesting that it is not a specific cell type driving the
associations. Secondly, we used differential expression

patterns to identify blood cell type specific markers in
the list of IM or EM significant aging-related genes, and
visualized the mean expression in t-SNE plots (Fig. S4).
The EM aging-related genes contain fewer cell type
specific markers: no markers could be identified for
three cell types (Natural Killer bright subset, CD8+ T
and B cells). Importantly, the cell type marker genes that
were identified among EM genes are less representative
for their cell types than the IM markers, as shown in
Fig. S4. In addition, we observed that the mean expres-
sion range for the EM genes was always larger, highlight-
ing a higher gene expression variation (mean expression

(See figure on previous page.)
Fig. 2 Gene expression residuals decrease with the EM. MSE values for regressions related to genes in every cohort after applying the IM and the
EM are reported for all genes in (A), and the 511 shared genes in (B). QQ plot Pearson correlation coefficients (r values) related to the
distributions of gene expression residuals are shown for all genes in (C) and for the shared genes significantly associated to aging in (D), after
applying the IM and EM models. Homoscedasticity was evaluated by correlating gene expression residuals from every model with age, and the
absolute Spearman ⍴ values obtained after meta-analysis are reported for all genes (E) and the shared genes significantly associated with aging
(F). LL, LifeLines DEEP; LLS, Leiden Longevity Study; NTR, Netherlands Twin Registry; RS, Rotterdam Study; EM, extended model; IM, initial model;
EM-age, extended model without age as covariate; IM-age, initial model without age as covariate. Statistical significance was assessed with a
paired, one-tailed Wilcoxon test. The stars indicate statistical significance: *** P ≤ 0.001, ** P ≤ 0.01, * P ≤ 0.05

Fig. 3 EM aging-related genes are not related to specific blood cell populations. a) Cell-type clustering of single cell RNA-seq (scRNA-seq) data. b)
The mean expression value of aging-related genes from the initial model (IM, left) and the extended model (EM, right) is plotted in the single
cells. c) The age distribution of the scRNA-seq donors. In d), the distributions of the mean gene expression for IM- and EM-related genes across
every cell in the t-SNE plots from b) are reported. e) The distributions of the coefficient of variation are presented for both the IM and EM.
Statistical significance for d) and e) was assessed with a Wilcoxon test. The level of statistical significance was set at P ≤ 0.05. For details regarding
cell population-specific regions, refer to [20]
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of IM genes per cell: 0.05–0.21; EM: 0.02–0.28, Fig. 3B
and S4). This observation was supported by the scRNA-
seq coefficients of variation (Wilcoxon test, P =
3.794⨯10−10, Fig. 3E). In summary, the scRNA-seq data
indicate that EM genes are less driven by cell types than
the IM genes, suggesting that the EM model enables a
better identification in blood of cell-quantity independ-
ent genes related to aging.

Functional enrichment analysis and aging signatures
In order to investigate whether the EM-derived aging-
related genes were more informative than the IM-
derived genes, we performed functional enrichment
using Enrichr [21]. As 82% of the EM genes were also
present in the IM list, we expected comparable func-
tional enrichments. On the contrary, very few pathways
and GO terms were shared between the EM and IM lists
(Table S8). The fact that we observed a smaller number
of genes in the EM list did not translate to a lower num-
ber of EM-specific enrichments. Therefore, we hypothe-
sized that although a high number of genes is shared
between the EM and the IM, the difference in the func-
tional enrichment results was due to the exclusion of
genes that are influenced by cell quantity, for which the
IM did not correct. Indeed, the enrichments for the EM
genes clustered around potential aging-related mecha-
nisms. For example, changes in GO biological processes
ascribable to the regulation of gene expression were
downregulated (e.g. ‘regulation of transcription, DNA-

templated’ - GO:0006355, ‘regulation of nucleic acid-
templated transcription’ - GO:1903506, ‘regulation of
protein processing’ - GO:0070613), in agreement with
previous findings [3] and the IM results.
Hemostasis, the process to prevent and stop bleeding,

emerged as a key upregulated pathway from the various
EM-related enrichment analyses (Table S8). The KEGG
pathway ‘coagulation cascade’ and the Reactome path-
way ‘hemostasis’ were both significantly upregulated (P
≤ 6.2⨯10−4, P ≤ 4.5⨯10−6, respectively), suggesting that
changes in the expression of genes related to hemostasis
and platelet functioning during aging have a very robust
signature, as previously reported [22–26]. Changes in
GO biological process terms related to platelet activity
(GO:0045055, GO:0002576, Table S8) and GO cellular
compartment terms linked to platelet granules (e.g.
‘platelet alpha granule’ - GO:0031091, Table S8) were
also found to be significant. The EM-related genes driv-
ing these results are reported in Table S9. Notably, both
models included the correction for platelet counts, sug-
gesting that these functional enrichments described the
activity of platelets independently of their prevalence.
Platelet count remained more or less stable during aging
in our data (Fig. S1B), so the number of platelets is not
expected to drive these enrichments.
After applying the EM, we expected that genes in-

volved in the same biological process and under the
same regulation could show a common pattern. To iden-
tify this pattern, we calculated the correlations between

Fig. 4 Heatmap of gene expression residuals correlations for EM upregulated aging-related genes. Heatmap showing upregulated EM aging-
related genes clustered based on the paired correlations of their gene expression residuals. Highly correlated clusters were identified and
highlighted with a yellow border. The cluster in the upper left corner contains genes associated with platelet activity pathway and GO terms. See
Results and Methods sections for details
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the gene expression residuals. We observed several clus-
ters with highly correlating values (Fig. 4 and Fig. S5),
which we further analyzed with Enrichr. While most
clusters did not show a clear enrichment, cluster 1 of
the upregulated EM aging-related genes (Fig. 4, upper
left corner) was enriched for terms related to platelet ac-
tivity, again highlighting its role in aging (Fig. S6). Five
genes (PF4, PPBP, STON2, MYLK, LMNA) from the
platelet-related cluster 1 were previously identified to be
differentially expressed with age in platelets [25]. Al-
though PF4 and PPBP did not show the same direction
of effect, a difference that may result from the sample
size or the model used, the overall finding that platelets
show increased activity with age is conserved [22, 23, 25,
26]. The EM enrichment result of platelet activity was
independent of the measured number of platelets. The
correlations between gene expression levels of the genes
from cluster 1 that contribute to the enrichment and
measured platelet levels are very significant (Fig.
S7A), but they disappear when we compare the re-
sidual gene expression from the EM with such plate-
let counts (Fig. S7B).
Lastly, we explored the GenAge database [27] as a re-

source to identify enrichments in aging genes when con-
sidering both IM or EM results. Both IM- and EM-
related gene lists were found to contain aging genes re-
ported also in GenAge (Table S10). In particular, all the
EM-related genes identified as aging genes in GenAge
were found to be a subset of the IM-related genes, with
the exception of EMD coding for emerin. This result is
particularly intriguing as EMD has a role in nuclear lam-
ina, already known for its relevance in aging through
LMNA. In addition, mutations in both EMD and LMNA
are involved in the Emery–Dreifuss muscular dystrophy.
This result highlights once more the filtering properties
of the EM model, and further suggests its ability in mak-
ing aging information stand out.

Discussion
Aging is a process that enhances the probability of
getting diseases such as cancer, diabetes and various
types of neurodegeneration. In order to understand how
an organism reaches these diseased states, it is valuable
to study the preceding period, where the organism ages.
Changes can be investigated by analyzing aging cohorts
as representatives of an aging population. Following this
reasoning, in this study we used four Dutch aging co-
horts (Table S1) and analyzed gene expression changes
during aging in whole blood, an easily accessible tissue,
by implementing a new model (EM) to correct for cell
type proportions. This extended cell correction enabled
us to calibrate gene expression according to the number
of blood cells and extract an aging gene expression pat-
tern that was less influenced by cell quantity compared

to previously published models [3, 4]. The rationale be-
hind the method we propose is that both variations in
organismal cell composition and gene expression influ-
ence the processes of aging and diseases, and that cell
correction enables to filter out the expression of specific
cell biomarkers while aiming at retaining those gene ex-
pression patterns that capture the main and shared aging
processes in the whole tissue. In turn, since aging is
known to be tightly linked with diseases, the analyses
presented here could form a starting point to identify
blood-related aging and disease players.
To test the performance of our EM, we evaluated its

compliance to the assumptions of regression. The EM
outperformed the old model, IM, when analyzing the
MSE, normality of residuals and homoscedasticity,
highlighting that an increased cell correction results in a
more accurate gene expression estimation during aging.
Next, we asked which cell population contributed the

most to the list of aging-related genes provided by both
the IM and EM. For this purpose, we calculated per cell
type the mean gene expression of both IM and EM
genes using scRNA-seq data from ~ 25,000 blood mono-
nuclear cells of 45 donors [20]. The EM aging-related
genes had lower mean gene expression levels, fewer cell
type specific marker genes and those markers that were
present were less abundantly expressed (Fig. 3 and S4).
We consequently reasoned that these genes are less in-
fluenced by cell composition and quantity.
We performed a functional enrichment analysis for

GO terms, KEGG and Reactome pathways in order to
gain insight on the blood-based biological mechanisms
driving aging. Although many of the EM genes were also
identified using the IM, the enrichments were often not
overlapping suggesting an increased precision in evaluat-
ing the relation between gene expression and age. In
particular, platelet-related categories stood out in these
results. We clustered the EM genes based on gene
expression residuals and again found the strongest en-
richment in the upregulation of platelet activity.
Since our EM includes a correction for platelet counts,

the observation that platelet activation is enriched in re-
lation to the EM aging-related genes is possibly due to
the following reasons: 1) the EM did not correct for cell
counts sufficiently or 2) an increase in platelet activity is
a true signature of aging. While we cannot exclude the
first reason, the fact that platelets do not associate with
age in our data make it less plausible. We also show that
there is no residual relationship between platelet counts
and gene expression after correction (Fig. S7B). More-
over, platelet activity has been reported to increase with
age in literature [22, 23, 25, 26] and incubating human
platelets with media from senescent human fibroblasts
increases platelet activation and degranulation [24].
Upon degranulation, platelets release the factors present
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in their granules into the surrounding environment. Of
note, our functional enrichment analysis retrieved GO
terms related to alpha granules, which store PPBP and
PF4. These proteins are known to be increasingly se-
creted during aging [22, 28, 29]. The genes encoding
these proteins were found to be upregulated aging-
related genes and, more specifically, they contributed to
the enrichment of alpha-granule-related cell compart-
ment GO terms (Table S8). Interestingly, an earlier
study that performed RNA-seq within isolated platelets
has observed decreased expression of PF4 and PPBP
with age (n = 154 [25]), while studies in whole blood
show upregulation with age (current study: both genes
significant; in the previous study [3]: PF4 not tested,
PPBP nominally significant). Within our scRNA-seq
data, both genes are specifically expressed in megakaryo-
cytes, the precursors of platelets (Fig. S8), suggesting
that the observed upregulation is not driven by the ex-
pression in any other blood cell types, but by platelets or
megakaryocytes themselves. Although these results may
arise from differences in sample sizes or models used,
this observation coupled with the fact that older individ-
uals have higher levels of PF4 and PPBP protein in their
plasma indicates that platelets become more active with
age as reflected both in gene expression levels and pro-
tein abundance in plasma [22].
In addition, alpha granules are known to store aging-

related proteins, such as IGF1, a protein that has been
extensively connected to aging together with its ortho-
logs in multiple organisms [30, 31]. Therefore, an en-
hanced platelet degranulation itself, as a consequence
for instance of an increased signaling by senescent cells,
could have a major impact on the progression of aging,
pointing at platelet activity as an aging hallmark and
biomarker.

Conclusions
Overall, we have shown that an extensive correction for
cell type differences can dramatically alter the effect sizes
and significance of associations between genes and age.
On top of this correction for measured or imputed cell
counts, we believe that large scRNA-seq datasets (e.g. sc-
eQTLGen consortium [32], The Human Cell Atlas [33])
will be essential to visualize and quantify to what extent
associations are independent of cell type composition and
how individual cell populations change with age. Our and
previous findings [25] indicate that it will be essential to
investigate to what extent the increased platelet activity is
driven by megakaryocytes using larger blood-based
scRNA-seq datasets [34]. Lastly, while the current study
was performed in blood, other tissues also feature cell type
heterogeneity. As such, we conclude that rigorous correc-
tion for cell type counts is important for studies in whole
blood, and will help to better understand immune aging

and other gene expression association studies. In sum-
mary, we hypothesize that the platelet enrichment ob-
served in the EM aging-related genes represents one of
the molecular signatures of aging. The increased platelet
activation and subsequent release of aging factors could
affect other cells and in turn the whole organism. How-
ever, many details regarding the mechanisms that are
affected by these aging factors remain to be discovered.

Methods
Study populations
We performed a meta-analysis using 3165 human per-
ipheral blood samples obtained from four independent
Dutch cohorts: LifeLines DEEP (LL, n = 1100) [11], Lei-
den Longevity Study (LLS, n = 585) [12], Netherlands
Twin Registry (NTR, n = 852) [13] and Rotterdam Study
(RS, n = 628) [14] with participants from a wide age
range (Table S1). None of the cohorts use disease as a
selection criterion. LL participants are all from the
Northern three provinces of the Netherlands, LLS in-
cludes the offspring and partners of long-lived individ-
uals, NTR studies twins and their relatives and RS
participants are all over 45 years old. All cohorts
followed similar protocols for genotyping and gene ex-
pression as part of the BIOS Consortium, an initiative of
the Biobanking and Biomolecular Resources Research
Infrastructure - The Netherlands [35].

Gene expression
Gene expression data was obtained using the same
protocol across all studies, as previously described [36].
Briefly, RNA was extracted from whole blood using
PAXgene Blood miRNA Kit (Qiagen, California, USA)
and paired-end sequenced with the Illumina HiSeq 2000
platform. After quality control by FastQC, adapters were
removed and read quality trimming steps executed.
Reads were aligned with STAR using GRCh37 as a refer-
ence while masking common (MAF > 1%) SNPs in the
Genome of the Netherlands [37]. Reads were assigned to
genes with HTseq using gene definitions from Ensembl
v71. Subsequently, expression values for all exons of
each gene were added up to represent gene expression,
measured in base count per gene. Prior to normalization,
population outliers were removed based on a plot of the
first two principal components, calculated on non-
imputed genotypes. The first step in the normalization
procedure was the application of the trimmed mean of
M-values normalization method [38]. Next, we removed
genes with no variance, log2 transformed the expression
matrix and Z-transformed by centering and scaling of
the genes, following a previously published protocol de-
scribed in detail in the online cookbook [39].
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Cell count imputation
We then performed imputation of cell counts, since
these were not present for all included samples. For im-
putation, we only considered samples where all categor-
ical covariates (sex, smoking status, fasting before blood
sampling, RNA plate) were available (see Table S2 for
missing values). We estimated the 33 WBC subtypes in-
cluded in the EM using the R package Decon-cell, a
method that quantifies cell types using expression of
marker genes (Table S3) [15]. The red blood cell (RBC)
count was imputed using multivariate imputation by
chained equations (MICE) from the R package MICE
version 2.30 [40] because this cannot be imputed based
on gene expression values, but rather relies on the other
cell type counts and other phenotypes (Table S2). In
MICE, we used predictive mean matching, as it has the
advantage of imputing missing values within the ob-
served spectrum after creating a normal distribution [40,
41]. Values outside the range of ± 3 standard deviations
from the mean were removed after log2 transformation.

Models for differential expression during chronological
age
The IM was taken from the previous work [3] and is:

yi ≈ β0 þ β1agei þ β2xi2 þ…þ βpxip þ εi

with y being gene expression levels for every gene, i the
number of cohort samples, age (xi1) in years at time of
blood sampling, and the following additional variables
being the other covariates, including cell counts (for a
total of p predictors). Since we included 3165 samples,
we have many more observations than predictors in the
models (IM = 11, EM = 44), suggesting that the models
do not suffer from overfitting [42]. As covariates, we in-
cluded sex, smoking status, fasting before blood sam-
pling, RNA plate and GC content (an RNA-sequencing
quality control score). All covariates were fixed effects,
except for RNA plate, which was set as a random effect.
As cell counts, we included the number of RBCs, plate-
lets, granulocytes, lymphocytes and monocytes (Table
S1). In our EM, the imputed proportions of 33 WBC
subtypes were included, to increase the power to detect
cell-independent age effects. For a complete overview of
WBC subtypes see Table S3. Both the IM and EM were
tested on 19,932 genes that showed expression in blood
of at least 0.5 counts per million in at least 1% of the
samples [43]. For these tests, we used the lmer function
from the R package lme4 version 1.1.13 [44]. Sample
sizes, effect directions, and P-values were extracted from
the result files of both linear models.

Meta-analysis
To combine associations across the four cohorts and to
avoid bias of results due to cohort-specific effects, we
first analyzed each cohort separately and then conducted
a meta-analysis. We used the meta-analysis tool for
genome-wide association scans (METAL) to calculate
weighted Z-scores and P-values for every gene [45]. Al-
though originally developed for meta-analysis of genome
wide association studies, METAL was easily adapted for
expression associations as described in the previous
work [3].

Evaluation of the regression models
To evaluate the performance of the regression models,
we used gene expression residuals and investigated MSE
values, distribution of residuals and homoscedasticity.
The distribution of residuals was evaluated by calculat-
ing the QQ plot Pearson correlation coefficient from
sample and theoretical quantiles, considering that the
higher the correlation value, the more the distribution
approximates normality. Regarding homoscedasticity,
meta-analysis was conducted on cohort-related, gene-
specific Spearman ρ values (rho values) obtained by cor-
relating age with the gene expression residuals, calcu-
lated from the application of the IM and EM. For this
purpose, a Fisher Z-transformation was applied to the ρ
values after evaluating the approximation of their distri-
bution to normality with a QQ plot. Then, Z-scores
were combined across the cohorts using a weighted
approach as described in [46] and the overall Z-score
converted to ρ with the inverse Fisher transformation.

Functional enrichment analysis
To better understand gene function, we performed func-
tional enrichment using Enrichr [21]. For this analysis,
we grouped genes significantly associated with aging (P
≤ 2.5⨯10−6, Bonferroni correction: 0.05/19,932 investi-
gated genes) in either the IM or the EM into up- and
downregulated genes. Using this approach, we retrieved
information regarding enrichment in pathways based on
KEGG and Reactome or GO terms. In addition, gene ex-
pression residuals were used to correlate genes signifi-
cantly associated with aging. Correlating clusters were
obtained with complete-linkage clustering and highly
correlating clusters marked with a yellow border were
identified by summing the correlation values within such
cluster above 0, and dividing this sum for the total num-
ber of correlations in that cluster, taking into account
that a cluster with perfect correlations has only 1s, and
since their sum would be identical to the total number
of correlations, division would yield 1 (our threshold was
set to 0.95).
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Single-cell RNA-seq data and visualization
To interpret the cell type specificity of our age-
associated genes, we used scRNA-seq data for approxi-
mately ~ 25,000 peripheral blood mononuclear cells
from 45 LL donors. Collection and normalization of the
data has been described previously [20]. We used the R
package Seurat version 1.4.0.13 for scRNA-seq analyses
and visualizations [47]. ScRNA-seq data enabled the de-
tection of eleven cell types: classical and non-classical
monocytes, myeloid and plasmacytoid dendritic cell,
CD56 bright and dim natural killer cells, CD4+ and
CD8+ T cells, B cells, plasma cells and megakaryocytes
[20]. Within these cell types, we calculated the mean ex-
pression of the genes significantly associated with aging
identified by the IM and the EM, and represented their
expression in t-SNE plots. We then identified genes that
we considered markers for each of the 11 cell types
using the function `FindMarkers()` from Seurat using
the loose thresholds of min.pct = 0.5, min.diff.pct = 0.2
to evaluate whether the aging-related genes were reflect-
ing specific cell types.
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Additional file 1: Table S1. Samples for which all covariates were
available and were included in the analyses. LL, LifeLines DEEP; LLS,
Leiden Longevity Study; NTR, Netherlands Twin Registry; RS, Rotterdam
Study; IQ, interquartile range; BMI, body mass index; RBC, red blood cells;
GC, guanine – cytosine. A RBC count was imputed for all LLS samples
(see Methods).

Additional file 2: Table S2. Missing values expressed in number and
percentage per cohort. Values are number (n) and percentage (%). LL,
LifeLines DEEP; LLS, Leiden Longevity Study; NTR, Netherlands Twin
Registry; RS, Rotterdam Study.

Additional file 3: Table S3. Overview of all 33 imputed white blood
cell (WBC) subtypes. The codes of each subtype used in the EM model
are reported.

Additional file 4: Table S4. Summary statistics of gene associations
with age for the initial model (this sheet) and the extended model (next
sheet).

Additional file 5: Table S5. The number of total overlapping genes
(upper part), the conservation of direction (middle part) and the
percentage of genes associated with aging considering the discovery
genes (lower part) is reported. EM, Extended Model; IM, Initial Model;
GS1, gene set 1 from [3]; GS2, gene set 2 from [4].

Additional file 6: Table S6. Mean squared errors, Pearson correlation
coefficient (r) and Spearman correlation coefficient (rho) of residual gene
expression with age. LL, LifeLines DEEP; LLS, Leiden Longevity Study; NTR,
Netherlands Twin Registry; RS, Rotterdam Study; EM, extended model; IM,
initial model; EM-age, extended model without age as covariate; IM-age,
initial model without age as covariate.

Additional file 7: Table S7. Correlation coefficients per gene; initial
model (im); extended model (em).

Additional file 8: Table S8. Enrichment of Reactome pathways, KEGG
pathways and GO terms.

Additional file 9: Table S9. Overlap of IM- and EM-related genes with
platelet-related genes derived from the GO, KEGG and Reactome enrich-
ments described in Table S8.

Additional file 10: Table S10. Overlap of IM- and EM-related genes
with the known aging-related genes in the GenAge database.

Additional file 11: Figure S1A. Heatmap of extended model
predictors. A heatmap of Spearman correlations between all cell type
predictors used in the extended model (EM). Figure S1B. Correlations of
selected variable counts with age. The Spearman correlations of selected
variables - including measured or imputed cell counts - with age are
presented, colored per cohort (see legend). See Results section for details.
Figure S2. Correlation of Z-scores associated with IM and EM genes. A
Pearson correlation of the Z-scores associated with both significant and
not significant IM and EM genes is shown. The 45° diagonal is presented
as dashed, the correlation line is in red. See Results section for details.
Figure S3. Cohort-related, gene-specific ρ values. A) QQ plots used to
evaluate the distribution pattern of cohort-related, gene-specific ρ values.
B) Gene expression residuals decrease with the EM. Homoscedasticity
was evaluated by correlating gene expression residuals from every model
with age, and the absolute Spearman values obtained after meta-
analysis are reported for all genes minus the shared genes significantly
associated with aging. See Figure 2 in the main text and Methods for de-
tails. Statistical significance was assessed with a paired, one-tailed Wil-
coxon test. The stars indicate statistical significance: *** P ≤ 0.001, ** P ≤
0.01, * P ≤ 0.05. LL, LifeLines DEEP; LLS, Leiden Longevity Study; NTR,
Netherlands Twin Registry; RS, Rotterdam Study; EM, extended model; IM,
initial model; IM no age, IM without age as covariate; EM no age, EM
without age as covariate. Figure S4. scRNA-seq data-derived t-SNE plots
reveal that IM-related aging genes are more likely cell type-specific
marker genes. Mean expression levels of cell type marker genes among
aging-related genes identified in the Initial Model (IM, left) and in the Ex-
tended Model (EM, right) are plotted. Where applicable, IM- and EM-
related intensities for same cell types plots were compared through a
Wilcoxon test, always observing a P ≤ 2.2⨯10−16. For details regarding cell
population-specific regions, refer to [20]. Figure S5. Heatmap of gene ex-
pression residuals correlations for EM downregulated aging-related genes.
Downregulated EM aging-related genes were clustered based on the cor-
relations of gene expression residuals and highly correlating clusters were
identified and highlighted with a yellow border. See Results section for
details. Figure S6. Expression values of platelet-related genes across age.
The four cohorts are colored separately and the Spearman correlations
and P-values are calculated for each cohort independently. Figure S7.
Correlations between (residual) gene expression levels of the genes from
platelet-related cluster 1 and measured platelet levels. A) Spearman corre-
lations between gene expression levels and measured platelets, B) Spear-
man correlations between gene expression residuals from the extended
model and measured platelets. Figure S8. scRNA-seq data-derived t-SNE
plots reveal that PF4 and PPBP are specifically expressed in megakaryo-
cytes. Mean expression levels of platelet marker genes PF4 and PPBP are
plotted. For details regarding cell population-specific regions, refer to
[20].
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