44 research outputs found

    Molecular dynamics simulation of human LOX-1 provides an explanation for the lack of OxLDL binding to the Trp150Ala mutant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dimeric lectin-like oxidized low-density lipoprotein receptor-1 LOX-1 is the target receptor for oxidized low density lipoprotein in endothelial cells. <it>In vivo </it>assays revealed that in LOX-1 the basic spine arginine residues are important for binding, which is lost upon mutation of Trp150 with alanine. Molecular dynamics simulations of the wild-type LOX-1 and of the Trp150Ala mutant C-type lectin-like domains, have been carried out to gain insight into the severe inactivating effect.</p> <p>Results</p> <p>The mutation does not alter the dimer stability, but a different dynamical behaviour differentiates the two proteins. As described by the residues fluctuation, the dynamic cross correlation map and the principal component analysis in the wild-type the two monomers display a symmetrical motion that is not observed in the mutant.</p> <p>Conclusion</p> <p>The symmetrical motion of monomers is completely damped by the structural rearrangement caused by the Trp150Ala mutation. An improper dynamical coupling of the monomers and different fluctuations of the basic spine residues are observed, with a consequent altered binding affinity.</p

    Gene-Based Antibody Strategies for Prion Diseases

    Get PDF
    Prion diseases or transmissible spongiform encephalopathies (TSE) are a group of neurodegenerative and infectious disorders characterized by the conversion of a normal cellular protein PrPC into a pathological abnormally folded form, termed PrPSc. There are neither available therapies nor diagnostic tools for an early identification of individuals affected by these diseases. New gene-based antibody strategies are emerging as valuable therapeutic tools. Among these, intrabodies are chimeric molecules composed by recombinant antibody fragments fused to intracellular trafficking sequences, aimed at inhibiting, in vivo, the function of specific therapeutic targets. The advantage of intrabodies is that they can be selected against a precise epitope of target proteins, including protein-protein interaction sites and cytotoxic conformers (i.e., oligomeric and fibrillar assemblies). Herein, we address and discuss in vitro and in vivo applications of intrabodies in prion diseases, focussing on their therapeutic potential

    El Mercosur frente al alca: complementación o confrontación

    Get PDF
    n.d.Fil: Laredo, Iris M- Facultad Ciencias Económicas y Estadística - Universidad Nacional de Rosario - Argentin

    Intrabody-mediated diverting of HP1β to the cytoplasm induces co-aggregation of H3-H4 histones and lamin-B receptor

    Get PDF
    Diverting a protein from its intracellular location is a unique property of intrabodies. To interfere with the intracellular traffic of heterochromatin protein 1β (HP1β) in living cells, we have generated a cytoplasmic targeted anti-HP1β intrabody, specifically directed against the C-terminal portion of the molecule. HP1β is a conserved component of mouse and human constitutive heterochromatin involved in diverse nuclear functions including gene silencing, DNA repair and nuclear membrane assembly. We found that the anti-HP1β intrabody sequesters HP1β into cytoplasmic aggregates, inhibiting its traffic to the nucleus. Lamin B receptor (LBR) and a subset of core histones (H3/H4) are also specifically co-sequestered in the cytoplasm of anti-HP1β intrabody-expressing cells. Methylated histone H3 at K9 (Me9H3), a marker of constitutive heterochromatin, is not affected by the anti-HP1β intrabody expression. Hyper-acetylating conditions completely dislodge H3 from HP1β:LBR containing aggregates. The expression of anti-HP1β scFv fragments induces apoptosis, associated with an alteration of nuclear morphology. Both these phenotypes are specifically rescued either by overexpression of recombinant full length HP1β or by HP1β mutant containing the chromoshadow domain, but not by recombinant LBR protein. The HP1β-chromodomain mutant, on the other hand, does not rescue the phenotypes, but does compete with LBR for binding to HP1β. These findings provide new insights into the mode of action of cytoplasmic-targeted intrabodies and the interaction between HP1β and its binding partners involved in peripheral heterochromatin organisation

    Functional Analysis and Molecular Dynamics Simulation of LOX-1 K167N Polymorphism Reveal Alteration of Receptor Activity

    Get PDF
    The human lectin-like oxidized low density lipoprotein receptor 1 LOX-1, encoded by the ORL1 gene, is the major scavenger receptor for oxidized low density lipoprotein in endothelial cells. Here we report on the functional effects of a coding SNP, c.501G>C, which produces a single amino acid change (K>N at codon 167). Our study was aimed at elucidating whether the c.501G>C polymorphism changes the binding affinity of LOX-1 receptor altering its function. The presence of p.K167N mutation reduces ox-LDL binding and uptake. Ox-LDL activated extracellular signal-regulated kinases 1 and 2 (ERK 1/2) is inhibited. Furthermore, ox-LDL induced biosynthesis of LOX-1 receptors is dependent on the p.K167N variation. In human macrophages, derived from c.501G>C heterozygous individuals, the ox-LDL induced LOX-1 46 kDa band is markedly lower than in induced macrophages derived from c.501G>C controls. Investigation of p.K167N mutation through molecular dynamics simulation and electrostatic analysis suggests that the ox-LDL binding may be attributed to the coupling between the electrostatic potential distribution and the asymmetric flexibility of the basic spine residues. The N/N-LOX-1 mutant has either interrupted electrostatic potential and asymmetric fluctuations of the basic spine arginines

    Assembled IgG molecules are exported from the endoplasmic reticulum in myeloma cells despite the retention signal SEKDEL.

    No full text
    The KDEL retention signal, when added at the C-terminal of the constant region of light and heavy chains of immunoglobulins is able to efficiently retain assembled immunoglobulins only in cells of nonlymphoid origin. In transfected myeloma cells the wild type and the KDEL-Ig mutants are secreted with the same efficiency. This phenomenon is not due to a proteolytic cleavage of the KDEL signal nor to a lack of intermolecular disulfide bond formation and is not due to an impaired recognition of the KDEL signal in myeloma cells. Thus, the constitutive secretion of assembled immunoglobulins, currently considered to follow a default process, appears to be regulated by a mechanism that is able to overcome an efficient ER retention system

    Altered intracellular distribution of PrP(C) and impairment of proteasome activity in tau overexpressing cortical neurons.

    Get PDF
    The microtubule associated protein tau plays a crucial role in Alzheimer's disease and in many neurodegenerative disorders collectively known as tauopathies. Recently, tau pathology has been also documented in prion diseases although the possible molecular events linking these two proteins are still unknown. We have investigated the fate of normal cellular prion protein (PrP(C)) in primary cortical neurons overexpressing tau protein. We found that overexpression of tau reduces PrP(C) expression at the cell surface and causes its accumulation and aggregation in the cell body but does not affect its maturation and glycosylation. Trapped PrP(C) forms detergent-insoluble aggregates, mainly composed of un-glycosylated and mono-glycosylated forms of prion protein. Interestingly, co-transfection of tau gene in cortical neurons with a proteasome activity reporter, consisting of a short peptide degron fused to the carboxyl-terminus of green fluorescent protein (GFP-CL1), results in down-regulation of the proteasome system, suggesting a possible mechanism that contributes to intracellular PrP(C) accumulation. These findings open a new perspective for the possible crosstalk between tau and prion proteins in the pathogenesis of tau induced-neurodegeneration

    Hidden receptors for nerve growth factor in PC12 cells

    No full text
    The binding of nerve growth factor (NGF) to its receptors in PC12 cells was studied in two experimental conditions: (a) cell fixation with paraformaldehyde followed by permeabilization of the plasma membrane with methanol and (b) metabolic poisoning of living cells with sodium azide. Paraformaldehyde fixation of PC12 cells causes a 60-70% reduction of NGF binding capacity; the original binding capacity is restored following permeabilization with methanol. A kinetic analysis of NGF binding under these conditions reveals a single homogeneous population of receptors at variance with experiments performed in living cells where two kinetically distinct types of NGF receptors were demonstrated [Landreth, G. E. and Shooter, E. M. (1980) Proc. Natl Acad. Sci. USA, 77, 4751-4755; Schechter, A. L. and Bothwell, M. A. (1981) Cell, 24, 867-874]. Our results suggest that a proportion of the NGF receptors in PC12 cells is hidden, i.e. not available for binding to the ligand, and in a dynamic equilibrium with exposed receptors. The existence of hidden receptors is confirmed by treatment of PC12 cells with sodium azide, which causes a 50% reduction in NGF binding capacity and protection from trypsin digestion of the remaining pool of hidden receptors. The latter become exposed at the cell surface following removal of sodium azide. Our data provide an interpretation for the as yet unsatisfactorily explained data on NGF receptors

    Therapeutic application of intrabodies against age-related neurodegenerative disorders.

    No full text
    Many neurodegenerative diseases, referred to as misfolding diseases, are characterized by the formation and accumulation of pathological extracellular and intracellular misfolded aggregates. Ageing is considered the major risk factor for neurodegenerative disorders and, due to increase of mean lifespan, the clinical relevance is growing dramatically with a urgent need to find new effective therapeutic approaches. The intracellular antibody technology is a gene-based strategy which exploits the specificity of recombinant antibodies to neutralize or modify the function of intracellular and extracellular target antigens. Intrabodies can potentially recognize all the pathological conformers of a misfolding-prone protein, and therefore they are emerging as therapeutic agents for the treatment of misfolding diseases as well as molecular tools for the understanding of their pathogenesis. Here we focus on the application of intrabodies against two major age-related neurodegenerative disorders, Alzheimer's disease (AD) and Parkinson's disease (PD) and the description of in vivo gene delivery systems available for their potential entering in the clinical setting
    corecore