11 research outputs found

    Anti-Inflammatory Properties of the Citrus Flavonoid Diosmetin: An Updated Review of Experimental Models

    No full text
    Inflammation is an essential contributor to various human diseases. Diosmetin (3′,5,7-trihydroxy-4′-methoxyflavone), a citrus flavonoid, can be used as an anti-inflammatory agent. All the information in this article was collected from various research papers from online scientific databases such as PubMed and Web of Science. These studies have demonstrated that diosmetin can slow down the progression of inflammation by inhibiting the production of inflammatory mediators through modulating related pathways, predominantly the nuclear factor-κB (NF-κB) signaling pathway. In this review, we discuss the anti-inflammatory properties of diosmetin in cellular and animal models of various inflammatory diseases for the first time. We have identified some deficiencies in current research and offer suggestions for further advancement. In conclusion, accumulating evidence so far suggests a very important role for diosmetin in the treatment of various inflammatory disorders and suggests it is a candidate worthy of in-depth investigation

    Controlled Growth of Gold Nanobipyramids Using Thiocholine for Plasmonic Colorimetric Detection of Organophosphorus Pesticides

    No full text
    Implementing suitable additives as morphology control agents to tune the shape of gold nanocrystals is a great challenge, as it requires the production of additives in a controlled manner and subsequent rational design of its applications. Herein, thiocholine-controllable regulation of the shape of gold nanobipyramids (AuNBPs) is proposed for the first time. Subsequently, it is used for constructing a plasmonic colorimetric sensor for the detection of organophosphorus pesticides (OPs). The principle of the platform is that first, highly uniform AuNBPs are prepared in situ by a seed-mediated growth method. Then, the thiocholine produced from the hydrolysis of acetylthiocholine by acetylcholinesterase (AChE) can be selectively adsorbed on the surface of the gold seeds, preventing the gold seeds from forming AuNBPs. Transmission electron microscopy shows the evolution of the shape of AuNBPs from bipyramid to cube and finally irregular sphere as the concentration of thiocholine increases. Therefore, the AChE concentration is highly correlated with the shape of the grown gold nanoparticles. Consequently, a plasmonic colorimetric method is established for the sensitive detection of OPs with the ability to irreversibly inhibit AChE activity. The proposed method achieves highly sensitive detection of paraoxon and demeton with limit of detections as low as 1.07 and 6.48 ng mL–1, respectively. Owing to the advantages of simple operation and high sensitivity, this method has great potential in the monitoring of OPs in agricultural products
    corecore