64 research outputs found

    A creep model for metallic composites based on matrix testing: Application to Kanthal composites

    Get PDF
    An anisotropic creep model is formulated for metallic composites with strong fibers and low to moderate fiber volume percent (less than 40 percent). The idealization admits no creep in the local fiber direction and assumes equal creep strength in longitudinal and transverse shear. Identification of the matrix behavior with that of the isotropic limit of the theory permits characterization of the composite through uniaxial creep tests on the matrix material. Constant and step-wise creep tests are required as a data base. The model provides an upper bound on the transverse creep strength of a composite having strong fibers embedded in a particular matrix material. Comparison of the measured transverse strength with the upper bound gives an assessment of the integrity of the composite. Application is made to a Kanthal composite, a model high-temperature composite system. Predictions are made of the creep response of fiber reinforced Kanthal tubes under interior pressure

    Effect of Microscopic Damage Events on Static and Ballistic Impact Strength of Triaxial Braid Composites

    Get PDF
    The reliability of impact simulations for aircraft components made with triaxial-braided carbon-fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Methods to characterize the material properties used in the analytical models from a systematically obtained set of test data are also lacking. A macroscopic finite element based analytical model to analyze the impact response of these materials has been developed. The stiffness and strength properties utilized in the material model are obtained from a set of quasi-static in-plane tension, compression and shear coupon level tests. Full-field optical strain measurement techniques are applied in the testing, and the results are used to help in characterizing the model. The unit cell of the braided composite is modeled as a series of shell elements, where each element is modeled as a laminated composite. The braided architecture can thus be approximated within the analytical model. The transient dynamic finite element code LS-DYNA is utilized to conduct the finite element simulations, and an internal LS-DYNA constitutive model is utilized in the analysis. Methods to obtain the stiffness and strength properties required by the constitutive model from the available test data are developed. Simulations of quasi-static coupon tests and impact tests of a represented braided composite are conducted. Overall, the developed method shows promise, but improvements that are needed in test and analysis methods for better predictive capability are examined

    Test Methodology Development for Experimental Structural Assessment of ASC Planar Spring Material for Long-Term Durability

    Get PDF
    A vibration-based testing methodology has been developed that will assess fatigue behavior of the metallic material of construction for the Advanced Stirling Convertor displacer (planar) spring component. To minimize the testing duration, the test setup is designed for base-excitation of a multiplespecimen arrangement, driven in a high-frequency resonant mode; this allows completion of fatigue testing in an accelerated period. A high performance electro-dynamic exciter (shaker) is used to generate harmonic oscillation of cantilever beam specimens, which are clasped on the shaker armature with specially-designed clamp fixtures. The shaker operates in closed-loop control with dynamic specimen response feedback provided by a scanning laser vibrometer. A test coordinator function synchronizes the shaker controller and the laser vibrometer to complete the closed-loop scheme. The test coordinator also monitors structural health of the test specimens throughout the test period, recognizing any change in specimen dynamic behavior. As this may be due to fatigue crack initiation, the test coordinator terminates test progression and then acquires test data in an orderly manner. Design of the specimen and fixture geometry was completed by finite element analysis such that peak stress does not occur at the clamping fixture attachment points. Experimental stress evaluation was conducted to verify the specimen stress predictions. A successful application of the experimental methodology was demonstrated by validation tests with carbon steel specimens subjected to fully-reversed bending stress; high-cycle fatigue failures were induced in such specimens using higher-than-prototypical stresse

    Approaches for Tensile Testing of Braided Composites

    Get PDF
    For angleply composites, lamina tension and compression strengths are commonly determined by applying classical lamination theory to test data obtained from testing of angleply composite specimens. For textile composites such as 2D triaxial braids, analysis is more complex and standard test methods do not always yield reliable strength measurements. This paper describes recent research focused on development of more reliable tensile test methods for braided composites and presents preliminary data for various approaches. The materials investigated in this work have 0deg+/-60 2D triaxial braid architecture with nearly equal fiber volume fraction in each of the three fiber directions. Flat composite panels are fabricated by resin transfer molding (RTM) using six layers of the braided preform aligned along the 0deg fiber direction. Various epoxy resins are used as matrix materials. Single layer panels are also fabricated in order to examine local variations in deformation related to the braid architecture. Specimens are cut from these panels in the shape of standard straight-sided coupons, an alternative bowtie geometry, and an alternative notched geometry. Axial tensile properties are measured using specimens loaded along the 0deg fiber direction. Transverse tensile properties are measured using specimens loaded perpendicular to the 0deg fibers. Composite tubes are also fabricated by RTM. These tubes are tested by internal pressurization using a soft rubbery material sealed between the inside diameter of the tube and the load fixtures. The ends of the tube are unconstrained, so the primary load is in the hoop direction. Tubes are fabricated with the 0deg fibers aligned along the tube axis by overbraiding the preform on a mandrel. Since the loading is in the hoop direction, testing of the overbraided tube provides a measure of transverse tensile strength. Previous work has indicated that straight-sided coupons yield a transverse tensile strength that is much lower than the expected material strength because of premature edge-initiated failure. Full-field strain measured during transverse tensile tests clearly showed accumulation of edge damage prior to failure. In the current work, high speed video and testing of single layer specimens are used to investigate potential failure mechanisms in more detail. High speed video clearly shows the edge initiation in six layer transverse tensile test coupons. Specimens with the bowtie geometry and the notched geometry minimize this edge effect and yield significantly higher transverse tensile strength values compared to the straight-sided coupons. However, bowtie and notched specimens geometries are not ideal because of the non-uniform stress and strain fields in the region of failure. Testing of tubes using internal pressurization eliminates edge-initiated failure and provides a more uniform state of stress and strain. Preliminary results indicate that bowtie, notched, and tube specimens yield comparable values for transverse tensile strength and that these values are much higher than the strength measured using a straight-sided coupon

    Carnitine reduces the lipoperoxidative damage of the membrane and apoptosis after induction of cell stress in experimental glaucoma

    Get PDF
    The pathological damage caused by glaucoma is associated to a high intraocular pressure. The ocular hypertone is most likely due to a defective efflux of aqueous humor from the anterior chamber of the eye. Ocular hypertension causes apoptotic death of retinal ganglion cells and overexpression of molecular markers typical of cell stress response and apoptosis. In this work, we report on the neuroprotective, antiapoptotic and antioxidant action of a natural substance, -carnitine. This compound is known for its ability to improve the mitochondrial performance. We analyze a number of cellular and molecular markers, typical of ocular hypertension and, in general, of the cell stress response. In particular, -carnitine reduces the expression of glial fibrillary acidic protein, inducible nitric oxide synthase, ubiquitin and caspase 3 typical markers of cell stress. In addition, the morphological analysis of the optic nerve evidenced a reduction of the pathological excavation of the optic disk. This experimental hypertone protocol induces a severe lipoperoxidation, which is significantly reduced by -carnitine. The overall interpretation is that mortality of the retinal cells is due to membrane damage

    What Is New for an Old Molecule? Systematic Review and Recommendations on the Use of Resveratrol

    Get PDF
    Stilbenes are naturally occurring phytoalexins that generally exist as their more stable E isomers. The most well known natural stilbene is resveratrol (Res), firstly isolated in 1939 from roots of Veratrum grandiflorum (white hellebore) (1) and since then found in various edible plants, notably in Vitis vinifera L. (Vitaceae) (2). The therapeutic potential of Res covers a wide range of diseases, and multiple beneficial effects on human health such as antioxidant, anti-inflammatory and anti-cancer activities have been suggested based on several in vitro and animal studies (3). In particular, Res has been reported to be an inhibitor of carcinogenesis at multiple stages via its ability to inhibit cyclooxygenase, and is an anticancer agent with a role in antiangiogenesis (4). Moreover, both in vitro and in vivo studies showed that Res induces cell cycle arrest and apoptosis in tumor cells (4). However, clinical studies in humans evidenced that Res is rapidly absorbed after oral intake, and that the low level observed in the blood stream is caused by a fast conversion into metabolites that are readily excreted from the body (5). Thus, considerable efforts have gone in the design and synthesis of Res analogues with enhanced metabolic stability. Considering that reduced Res (dihydro- resveratrol, D-Res) conjugates may account for as much as 50% of an oral Res dose (5), and that D-Res has a strong proliferative effect on hormone-sensitive cancer cell lines such as breast cancer cell line MCF7 (6), we recently devoted our synthetic efforts to the preparation of trans-restricted analogues of Res in which the E carbon-carbon double bond is embedded into an imidazole nucleus. To keep the trans geometry, the two aryl rings were linked to the heteroaromatic core in a 1,3 fashion. Based on this design, we successfully prepared a variety of 1,4-, 2,4- and 2,5-diaryl substituted imidazoles including Res analogues 1, 2 and 3, respectively, by procedures that involve transition metal-catalyzed Suzuki-Miyaura cross-coupling reactions and highly selective N-H or C-H direct arylation reactions as key synthetic steps. The anticancer activity of compounds 1–3 was evaluated against the 60 human cancer cell lines panel of the National Cancer Institute (NCI, USA). The obtained results, that will be showed and discussed along with the protocols developed for the preparation of imidazoles 1–3, confirmed that a structural optimization of Res may provide analogues with improved potency in inhibiting the growth of human cancer cell lines in vitro when compared to their natural lead. (1) Takaoka,M.J.Chem.Soc.Jpn.1939,60,1090-1100. (2) Langcake, P.; Pryce, R. J. Physiological. Plant Patology 1976, 9, 77-86. (3) Vang, O.; et al. PLoS ONE 2011, 6, e19881. doi:10.1371/journal.pone.0019881 (4) Kraft, T. E.; et al. Critical Reviews in Food Science and Nutrition 2009, 49, 782-799. (5) Walle, T. Ann. N.Y. Acad. Sci. 2011, 1215, 9-15. doi: 10.1111/j.1749-6632.2010.05842.x (6) Gakh,A.A.;etal.Bioorg.Med.Chem.Lett.2010,20,6149-6151

    Strength prediction for bi-axial braided composites by a multi-scale modelling approach

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10853-016-9901-z.Braided textile-reinforced composites have become increasingly attractive as protection materials thanks to their unique inter-weaving structures and excellent energy-absorption capacity. However, development of adequate models for simulation of failure processes in them remains a challenge. In this study, tensile strength and progressive damage behaviour of braided textile composites are predicted by a multi-scale modelling approach. First, a micro-scale model with hexagonal arrays of fibres was built to compute effective elastic constants and yarn strength under different loading conditions. Instead of using cited values, the input data for this micro-scale model were obtained experimentally. Subsequently, the results generated by this model were used as input for a meso-scale model. At meso-scale, Hashin’s 3D with Stassi’s failure criteria and a modified Murakami-type stiffness-degradation scheme was employed in a user-defined subroutine developed in the general-purpose finite-element software Abaqus/Standard. An overall stress–strain curve of a meso-scale representative unit cell was verified with the experimental data. Numerical studies show that bias yarns suffer continuous damage during an axial tension test. The magnitudes of ultimate strengths and Young’s moduli of the studied braided composites decreased with an increase in the braiding angle

    Role of free fatty acids in endothelial dysfunction

    Full text link

    A notched coupon approach for tensile testing of braided composites

    Get PDF
    A notched coupon geometry was evaluated as a method for tensile testing of 2D triaxial braid composites. Edge initiated shear failure has been observed in transverse tension tests using straight-sided coupons based on ASTM D3039. The notched coupon was designed to reduce the effects of edge initiated failure and produce the desired tensile failure. A limited set of tests were performed with partial pressurization of tubes to determine the transverse tensile strength in the absence of edge initiated failure. The transverse strength measured with the notched coupons was considerably higher than the straight-sided coupons, comparable to the tube results, and closer to the maximum possible strength based on maximum fiber strain. Further investigations of the effects of the observed biaxial stress state and stress concentrations in the notched geometry are needed
    corecore