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A notched coupon geometry was evaluated as a method for tensile testing of 2D triaxial braid composites.
Edge initiated shear failure has been observed in transverse tension tests using straight-sided coupons
based on ASTM D3039. The notched coupon was designed to reduce the effects of edge initiated failure
and produce the desired tensile failure. A limited set of tests were performed with partial pressurization
of tubes to determine the transverse tensile strength in the absence of edge initiated failure. The trans-

verse strength measured with the notched coupons was considerably higher than the straight-sided cou-
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pons, comparable to the tube results, and closer to the maximum possible strength based on maximum
fiber strain. Further investigations of the effects of the observed biaxial stress state and stress concentra-
tions in the notched geometry are needed.

Published by Elsevier Ltd.

1. Introduction

Uniaxial tensile properties of materials are used directly as one
measure of material performance and as part of the material prop-
erty input required for analysis of complex structures. In principle,
the uniaxial test method used to obtain a reliable tensile strength
value is simple to perform. A specimen with large length to width
ratio is loaded along its axis until failure occurs. However, there
are many issues that can affect the reliability of the measured value.
Homogeneous, isotropic materials are the simplest to test. For these
materials, surface flaws resulting from specimen preparation can
have a large effect on measured strength. In addition, the specimen
geometry must be properly designed to ensure failure within the
gage region of the specimen rather than in the transition from the
gage region to the gripped ends of the specimen. Alignment of the
specimen in the testrig is also important, especially for brittle mate-
rials. There is also a possibility of a dependence of the measured va-
lue on specimen size because of the statistical nature of failure
initiation at local defect sites.

Testing of unidirectional, continuous fiber composite materials
presents additional challenges because these materials are strong
along the fiber direction but weak transverse to the fiber direction.
Tabs are generally recommended for testing unidirectional material
in the fiber direction to avoid failure due to stresses induced at the

* Corresponding author at: NASA Glenn Research Center, Cleveland, OH, United
States. Tel.: +1 2164335568.
E-mail address: lee.w.kohlman@nasa.gov (L.W. Kohlman).

grips, but failure initiation can occur as a result of peel stresses at
the ends of these tabs [1]. Use of a “dogbone” specimen in which
the width transitions from a larger value at the grips to a smaller
value in the gage region is often not a useful approach because the
shear strength of the unidirectional laminate is too small to allow
sufficient load transfer from the thinner to the wider section. In addi-
tion, exposed free fiber ends in the transition region can become
sites for premature failure initiation. Also, it is difficult to measure
useful transverse tensile strength with a unidirectional straight-
sided coupon because, in real applications, the transverse strength
of a lamina is increased by the suppression of notch sensitivity by
adjacent plies; loads can bypass transverse cracks through fibers
in adjacent plies [2].

Measurements on angle-ply and cross-ply laminates are easier to
perform because the tensile strength is lower than that of a unidirec-
tional composite and because there is higher strength in the direc-
tion transverse to the load direction. Test standards, including
ASTM D3039 [1], have been developed to measure the tensile
strength of such laminates. Also, methods have been developed to
calculate the tensile strength of a unidirectional laminate (i.e. a lam-
ina) from tensile tests performed on cross-ply laminates [2]. This ap-
proach overcomes the limitations described above for directly
testing tensile strength using unidirectional specimens. However,
this method is subject to the assumptions imposed by the use of
classical lamination plate theory (CLPT) which includes the require-
ment that the lamina be in a state of plane stress [3] which is not
necessarily true in all laminations. An additional consideration with
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this approach is that the lamina strength (in the fiber direction)
calculated in this way represents the strength of a 0° ply (or plies)
surrounded by a 90° ply (or plies) rather than the strength that
would be measured directly using a unidirectional laminate. The
strength in the fiber direction calculated from tests on cross-ply lam-
inates could therefore be lower than the true lamina strength if the
adjacent plies induce a premature failure by processes such as trans-
verse cracking. This is not necessarily a disadvantage if the goal is to
measure a strength value that is representative of the composite
material as it is used in a laminated structure. Another important
concern for angle-ply and cross-ply laminates is the possibility of
premature failure resulting from interlaminar stresses at specimen
free edges [4].

The test methods described above and the methods for calculat-
ing lamina properties from laminated composites have additional
limitations for use with textile-reinforced composites, including
fabrics and braids. One major limitation is a result of the locally
varying (in plane) properties of fabrics and braids since methods
for calculating lamina properties rely on the assumption of homo-
geneous strain and stress distributions in a uniaxial specimen. The
use of high resolution digital image correlation (DIC) during a ten-
sile test reveals local and global strain field distortions due to the
development of local, architecture dependent load paths and dam-
age. This damage can be expected to cause redistribution of inter-
nal loads, resulting in an inhomogeneous stress state.

This paper addresses the need to develop new test methods for
measuring reliable tensile strength values for braided composites.
Previous work has identified formation of edge damage and local
splitting of fiber tows as processes that can have a large effect on
tensile strength measured using standard straight-sided specimens
[5-9]. Ivanov et al. [10] provides additional information on damage
processes in triaxial braid composites under tensile load. While
local splitting of fiber tows is a characteristic of the material that
could cause a true reduction in tensile strength, premature failure
caused by edge damage is a deficiency of the test method. An alter-
nate “bowtie” specimen geometry which mitigates the possibility of
edge initiated failure has been considered [11]. Measurements
made using bowtie specimens have yielded higher tensile strength
values compared to those measured using straight-sided speci-
mens. However, disadvantages of the bowtie specimen are the com-
plexity of specimen fabrication and the non-uniform state of stress
and strain in the gage region. Edge damage was also not completely
eliminated with these specimens. In this paper, an alternate
“notched” specimen geometry is evaluated. This specimen is much
simpler to fabricate than the bowtie specimen, but still has the
disadvantage of having a non-uniform state of stress and strain in
the gage region. In order to measure tensile strength under a more
uniform state of stress and strain that better approximates a uniax-
ial load condition, a test method using partial internal pressuriza-
tion of braided composite tubes was developed. In addition to
having a more uniform state of stress and strain in the gage region,
edge initiated failure is eliminated because failure initiation in the
tube specimen occurs in a region of the tube away from free edges.
Full-field surface strains were measured in order to determine the
strain field induced in the notched and tube specimens. An evalua-
tion of the notched and tube test geometries based on these full-
field strain measurements is presented in this paper. Preliminary
results are presented comparing the tensile strengths measured
using straight-sided, notched, and tube specimens.

2. Materials
2.1. Fiber and matrix materials

Composite panels were fabricated by resin transfer molding
(RTM) using two-dimensional triaxial braided preforms and

177 °C (350 °F) cure epoxy resins. A high strength, standard modu-
lus carbon fiber, TORAYCA T700S (Toray Carbon Fibers America,
Inc.), was used for all panels. Several matrix materials were used.
Most of the test method development was done using EPIKOTE
Resin 862/EPIKURE Curing Agent W matrix (Resolution Perfor-
mance Products, now Hexion Specialty Chemicals). This matrix
material is a readily available two-part system that is easy to pro-
cess because of its low viscosity and long working life at room tem-
perature. This resin system will be called E862 in this report. Two
other matrix materials were used to examine the effects of matrix
toughness. CYCOM PR 520 matrix (Cytec Industries, Inc.) is a one-
part toughened resin specifically designed for the RTM process.
Hexcel’s 3502 epoxy is a one-part brittle matrix material that is
not typically used as an RTM resin but has flow and cure properties
that are suitable for RTM processing.

2.2. Braided preform

A braid architecture with a [+60°/0°/—60°] layup containing 24k
tows in the 0° (axial) direction and 12k tows in the +60° (bias)
directions was examined. Although larger fiber bundles were used
in the axial direction, the fiber bundle spacing in the axial and bias
directions were adjusted to give the same fiber volume in the axial
and bias directions. This is a quasi-isotropic architecture so the glo-
bal in-plane stiffness properties are expected to be the same in all
directions when the region of interest includes a sufficient number
of unit cells.

2.3. Resin transfer molding

Composite panels were fabricated by placing six layers of the
[+60°/0°/—60°] braided preform into the RTM mold with the 0°
fibers aligned in the same direction. Although the axial (0°) fibers
in the various layers were aligned, the lateral position of the axial
tows in the six layers was random. Resin was injected into the
closed mold and cured according to processing conditions recom-
mended by the resin manufacturer. The E862 and PR 520 materials
were cured for 22 h at 177 °C (350 °F) and the 3502 was cured for
2h at 177 °C (350 °F). Cured panel dimensions (after trimming)
were 0.6096 m (2 ft) wide by 0.6096 m (2 ft) long by 3.175 mm
(0.125in.) thick. The 56% target for fiber volume was confirmed
by measurements using the acid digestion technique.

The braided composite tubes were manufactured by over braid-
ing six layers of triaxial braid on a mandrel, followed by RTM. Test
results are presented here for tubes made with E862 resin and
T700S fiber. The fiber volume fraction, braid angles, tow selections,
and cure conditions were chosen to match, as closely as possible,
the parameters of the flat panel material. The preforming methods
and molding procedures were adjusted as successive tubes were
fabricated in order to reduce defects and optimize the process. As
a result, some of the tubes had known defects (mainly local distor-
tion of fiber tows) prior to testing.

3. Experimental methods
3.1. Mechanical test methods

Tensile testing was performed on an axial/torsion test machine
capable of loading to 222 kN (50,000 Ibs). All flat coupon tests were
conducted under displacement control at a rate of 1.27 mm/min
(0.05 in./min) in accordance with ASTM D3039 Section 11.3.2 for
constant head-speed tests [1].

Two flat coupon geometries were used for tensile testing. These
included a straight-sided coupon based on ASTM D3039 and a
double edge notch coupon shown in Fig. 1. The ends of the
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Fig. 1. Straight-sided, notch, and tube specimen geometries with loading indicated.

straight-sided coupon are clamped by hydraulic grips, resulting in
an unsupported section 20.3 cm (8 in.) between the grips. The
straight-sided coupons were machined using a low feed rate dia-
mond saw. The notched specimens were first cut using abrasive
waterjet machining, after which, the notches were cut using a low
feed rate diamond saw. Approximately 5.1 cm (2 in.) on each end
of the notch coupons were within the hydraulic grips. The dimen-
sions (in mm), grip area, and load direction of both flat coupons
are shown in Fig. 1. Both geometries could be used for both axial
and transverse orientations without modification. The axial direc-
tion is defined as the direction parallel to the 0° fiber tow, while
transverse is perpendicular to the 0° tow. Fig. 2 shows the triaxial
braid architecture and indicates the axial and transverse directions
with respect to the material braid directions. The transverse
straight-sided coupon includes no tows that extend from grip to
grip. In this case, the edge initiated damage discussed above releases
the fiber tow at the edge of the specimen and allows damage to
propagate along the now unconstrained fiber tow. The axial
straight-sided and both axial and transverse notched coupons have
some tows that are gripped at both ends. This allows the load to be
carried beyond the stress that induces edge damage because, in or-
der for the specimen to fail, fibers must fail in tension. Average
strain, local strain, damage accumulation, and the uniformity of
the global strain field are examined using DIC methods described
below.

Partial internal pressurization of braided tubes was performed
using a rubber insert. The dimensions and pressurization region
of the tube specimen are shown in Fig. 1. The insert extends axially
approximately 1/3 of the length of the tube (centered on the

Axial tow
_.— Bias tow

<«—— Transverse ——>

Fig. 2. Triaxial braid architecture, axial and transverse orientations are identified.

Gage lengths - 24

Fig. 3. Optical strain gage (12.7 mm) location on a specimen and surface cracks.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

length) which was also approximately equal to the tube radius
(~5cm). The tube wall thickness, approximately 3.175 mm
(0.125in.), is sufficient to use thin wall tube approximations.
When the rubber insert is loaded in compression, it results in a
hoop load in the center 1/3 of the tube. The goal of this method
is to induce a hoop stress with very low axial stress to simulate a
transverse, uniaxial load condition. Finite element models were

—
1Y
S

! Iniation

‘LEdge damagel’

(b)
Iniiia_tion

(load
direction)

Fig. 4. (a) Edge damage identified in a transverse specimen using DIC. (b) A shear
failure. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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used to determine that there is a maximum tensile load in the axial
direction which is approximately 1/4 of the applied hoop load [12].
This method also has the advantage that failure does not initiate
near a free edge or geometric stress concentration, but rather at
a point near the center of the coupon. One possible problem is sen-
sitivity to defects caused by the more complex manufacturing pro-
cess required for tubes compared to that used for flat plates.

3.2. Digital image correlation methodology

DIC was chosen instead of conventional strain gages because it
eliminated the need to physically attach a sensor to the surface of
the specimen and it can provide full field strain and displacement
measurement. Also, strains measured by strain gages have been
shown to be dependent on gage size because of local architecture
[8]. Displacements in all three coordinate directions are measured
with the DIC system (x-specimen transverse, y-specimen longitudi-
nal, and z-specimen out of plane) allowing the calculation of full-
field strain. The DIC software calculates surface strains in the x
and y coordinate directions. It can also provide information on local
surface damage. This is discussed in more detail by Littell et al. [7].

The DIC measurement system used was commercially available
and consisted of two stereo digital cameras connected to a
computer with simultaneous image capture and DIC software.
During testing, a calibration process was first performed to calculate
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and store the relative camera position and orientation. The
calibrated measurement area for the cameras was approximately
35 mm x 28 mm x 28 mm, with a maximum displacement resolu-
tion of approximately 10~ mm. The corresponding load for each set
of images was recorded by an analog input from the axial/torsion
machine. This was used to calculate the instantaneous specimen
stress (load divided by initial minimum specimen cross section)
and generate stress-strain curves.

Approximately 150-350 pictures were taken by the camera sys-
tem, on average, during tensile loading. Two software variables
were kept constant for all testing. These included the size of the
tracked pixel groups and the offset from one pixel group to the
next. The DIC method tracks the locations of the pixel groups in
real 3D space. The software then compares the changing surface
locations during loading with the baseline locations on an un-
loaded specimen (immediately before the test) and calculates rel-
ative and absolute displacements and strains. The pixel group
size was kept constant at 13 x 13 pixels and an offset of 9 pixels
was used.

Once the strains were calculated, various visual representations
were generated by the software using color variation to represent
strain, displacement, and other computed values on the specimen
surface. In order to generate stress-strain data, an optical strain
extensometer was created by exporting displacement data at se-
lected points followed by performing AL/L calculations (change in

P rPr R PP R

Fig. 5. High speed video capture of tensile failure. (a) Transverse. (b) Axial.
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length divided by original length), A 12.7 mm x 12.7 mm
(0.51in. x 0.5 in.) optical strain extensometer was used to measure
an average strain over an area. This was intended to mimic a simi-
larly sized strain gage. Gliesche showed that such a comparison
could be done between an extensometer and DIC [13]. Limited test-
ing was performed with strain gages, but these suffered from pre-
mature failure of the strain gage due to local surface splitting
breaking the conduction path of the gage. The optical extensometer
was used to account for the non-uniform strain field which results
from the specimen architecture and local damage (opening of local
surface cracks causes DIC to measure artificially high local strain).
An example of an optical extensometer is shown if Fig. 3. Crack
opening is clearly visible as high locally measured strains, examples
of which are also indicated in Fig. 3.

3.3. X-ray computed tomography

Prior to testing, composite tube samples were inspected using
microfocus X-ray computed tomography (CT). Utilizing a cone
beam microfocus X-ray source and an area detector, the technique
was able to generate full field, three dimensional images of the
samples. Data was analyzed using various image processing tech-

€
y:
(a) Aluminum pezccf)ant
e 8
32
Stage 23 2.8
24
4.0 ?g
| 1.2
3.2 1 08
€ 1 04
8 244 - 0.0
o J — Horizontal
o — Vertical
2 1.6
o i
0.8 A 1~
00 T T T T T T T T
0 5 10 15 20 25 30 35 40 451
Section length, mm
b Ex,
( ) Aluminum percent
tensile 0.20
notch 0.16
Stage 23 0.12
0.08
0.04
0.00
-0.04
0.20 ~0.08
049 —0.12
Gl -0.16
0.081 -0.20
T 0041
g 0.00 4
a —0.04
5 -0.08
-0.12 —— Horizontal
—0.16 — Vertical
_0.20 T T T T

0 5 10 15 20 25 30 35 40 451

Section length, mm

Fig. 6. Strain distribution in a notched aluminum specimen, center indicated by
arrows. (a) Vertical strain, parallel to load. (b) Perpendicular strain. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

niques to generate radial CT slices through the thickness of the
samples. This data was then examined for processing defects such
as fiber misalignment and resin rich regions.

3.4. Acoustic emission

During one of the partial internal pressurization tests, a set of
four acoustic emission transducers were mounted to the sample
at 90° intervals on the outer surface of the tube. Acoustic emission
events were recorded continuously during specimen loading and a
post test analysis of the data was performed. Using arrival times of
the acoustic signals, event locations were calculated and plotted.
Data was used to identify the location of damage as loading pro-
gressed and to verify damage/failure was not initiated outside of
the gage section of the specimen.

4. Experimental results and discussion
4.1. Straight-sided coupon tests

The results of tensile tests performed using straight-sided cou-
pons have been reported previously [5-9]. This previous work iden-
tified edge damage as a probable cause for low transverse tensile
strength measurements and a possible cause for slightly reduced
axial strength measurements. Fig. 4 shows edge damage in a trans-
verse tension triaxial braid coupon before failure and the resulting
shear type failure observed after the test. The failure shown in
Fig. 4 is one of two failure modes observed in straight-sided
transverse tension tests. In this example, the failure initiates as dam-
age on the right edge and propagates as shear failure along both bias
fiber directions. The other commonly observed failure propagates as
ashear failure along only one bias fiber direction. Edge initiation and
shear propagation of failure has been confirmed with high speed vi-
deo obtained using Phantom v7.3 cameras. Fig. 5a shows the edge
initiated failure of a transverse tension specimen with a single bias
direction shear failure. Fig. 5b shows the failure of an axial tension
specimen which is also observed to start at an edge, toward the bot-
tom left for this test, followed by propagation across the specimen.
The initiation of failure at a free edge introduces test sensitivity to
machining induced defects and the internal stresses inherently
associated with fiber tow termination and free edge boundary
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Fig. 7. Local relative perpendicular in-plane stress component, centers of section
lines indicated by arrows. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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conditions discussed earlier [4], ultimately leading to a reduction in
measured strength. Further investigation of the reduction of mea-
sured axial strength due to edge initiation is required.

4.2. Notched tensile tests — aluminum

The notched tensile coupon is designed to suppress the edge
initiated failures shown in Figs. 4 and 5a. A consequence of the spec-
imen design is a non-uniform gage region. In order to examine the
global non-uniform strain field in the absence of the local non-uni-
formity induced by the composite architecture, tests were
performed with a homogeneous, isotropic material (aluminum
6061). All data presented for this test was obtained at a load level
before yielding occurred and therefore, the response is linear elastic.
Strain parallel to load (vertical direction, &,y ) is shown along section
lines for a notched aluminum specimen in Fig. 6a and strain perpen-
dicular to load (horizontal direction, &) is shown in Fig. 6b. The
multiaxial load state resulting from the coupon geometry was
estimated using Hooke’s Law (Egs. (1) and (2)), Poisson ratio
v =0.33, full field surface strains (&« and &yy), and the assumption
of a plane stress state (Eq. (3)) [14].
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Fig. 8. Strain distribution in a notched composite specimen, center indicated by
arrows. (a) Vertical strain, parallel to load. (b) Vertical strain, perpendicular to load.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

E
Oxx = m(l — V)8Xx + V(gyy + 8zz) (1)
= E 1—V)ey + V(e + € 2
nyfm( = V)eyy + V(éxx + &z) )
&z = ﬁ (8XX + SW) (3)

The relative stress state (the relative magnitude of perpendicu-
lar stress, oy, with respect to parallel stress, oyy,) was calculated
using Eq. (4). The result is not dependent on the modulus (E).

Onx _ (1 = V)exx + V(eyy + &22)
Oy (1= V)eyy + V(&xx + &2)

(4)

The accuracy of this solution depends on the accuracy of the
measured surface strains. At low strain levels, the error is high be-
cause the signal to noise level is low. To account for this, all results
calculated from strains below a minimum threshold were re-
moved. The remaining data was used to generate Fig. 7, which indi-
cates that the gage region is under biaxial tension. The missing
data surrounding the center of the specimen is a result of the
perpendicular strain (&4) crossing zero. The perpendicular stress
component (oxy) ranges from approximately 0.5ay, at the center
to 0.20yy near the notch tip. It should be noted that this method
was included to provide insight into the possible stress state of
the composite notch specimen before damage occurs. The accumu-
lation of damage causes the quasi-isotropic stiffness assumption to
no longer be valid. In addition, the Poisson ratio for the composite
is not v=0.33.

4.3. Notched tensile tests - composite

Strain parallel to load (vertical direction) is shown along section
lines for a notched composite specimen in Fig. 8a and strain per-
pendicular to load is shown in Fig. 8b. The specimen (PR 520) is
highly loaded (776 MPa) and near failure. Unlike the straight-sided
transverse specimen in Fig. 4, the strain pattern in the notched
composite is not significantly affected by the presence of free edges
and only limited damage is present around the notch location. Sim-
ilar to straight-sided specimens, local strain variations are caused
by damage in the local architecture and appear as local maxima
in the section line plots.

Fig. 9 shows the strengths for the three composite materials
that were tested in the axial and transverse directions as both

Tensile Strength (MPa)
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Transverse ASTM D 3039 ® Transverse Notch

Fig. 9. Strengths of notch and straight-sided specimens versus matrix material. (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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straight-sided and notch geometries. Testing of the straight-sided
and notched composite specimens in the transverse direction
produced higher strength values for the notch geometry, approach-
ing double the straight-sided strength in the case of the brittle
3502 based composite. Fig. 9 is the average of all tests performed
at each condition. The error bars represent one standard deviation
and the number of specimens is denoted in the bottom of each bar.
The strengths of the transverse straight-sided specimens (Fig. 9,
red squares) increase with toughness due to the resistance of the
matrix to propagating edge initiated damage. The transverse notch
specimen (Fig. 9, dark red) constrains the edge damage to a local-
ized area around the notch and forces a tensile failure (Fig. 10,
E862) instead of a shear failure (Fig. 4, E862). This results in signif-
icantly higher measured strengths which are closer to the axial
strengths. The measured transverse notch strengths are likely still
low because of the stress concentration in the area of the notch.
The stress concentration of the notch specimen has a greater effect
on composites with tougher matrices and results in a loss of
strength for the toughened material (PR 520 composite) in the ax-
ial direction (Fig. 9, dark blue). This implies that even though the
notch produces a higher transverse strength value than the
straight-sided coupon, it is still a lower bound on the actual mate-
rial strength. The strength of the brittle system (3502) in the axial
direction appears to be unaffected when comparing notch and
straight-sided specimens (Fig. 9, blue) but this too may be mislead-
ing. High speed videos taken of specimen failure in axial coupons
also suggest an edge initiation (Fig. 5b), which again could be ex-
pected to be more severe in the more brittle matrix composites
and could mean that axial straight-sided measurements for 3502
and E862 may also be low. The real strengths of the materials
should be due to local damage accumulation such as the splitting
discussed earlier and not a result of tow termination at free edges
or other geometric effects.

In order to determine the effects of the biaxial stress state on
the failure strength of the composite notch specimen, more needs
to be known about the failure surface. A more complex failure
surface for 2D triaxial braids has been suggested by Swanson and
Smith [15,16], though considerable scatter is present in the data.

Fig. 10. Tensile failure of a composite transverse tension specimen. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

It is expected that there will be some interaction between the
x and y components, but this data is difficult to measure and not
currently available for the materials discussed in this paper.
Research is currently underway to attempt to accurately measure
the failure surface for this material while excluding the effects of
free edges using tension/torsion/pressurization of tubes. This
should provide additional data against which to evaluate the
notched geometry.
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Fig. 11. High speed video capture of tube burst failure initiation.
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Fig. 12. Axial and circumferential locations of acoustic emission events during a
tube pressurization test. (a) Axial distribution of acoustic events. (b) Circumferen-
tial distribution of acoustic events.

4.4. Partial internal pressurization of tubes

Fig. 11 is a series of images from a high speed video that cap-
tured the burst failure of an E862 tube specimen (transverse tensile
failure). This failure initiates at the center of the tube where max-
imum stress occurs, as expected. The stress-strain response for the
tubes is nearly linear until stresses are comparable to the straight-
sided strength in the axial direction. Ultimate strains are ~1.8%
which is near that of the fiber (~2.1%) and the straight-sided axial
tension tests. Additionally, acoustic emission techniques were used
to identify the locations of damage accumulation. The axial (a) and
circumferential (b) locations of acoustic events are shown in
Fig. 12. Axially, the majority of acoustic events are located in the
center 1/3 of the tube which corresponds with the 1/3 loading area.
Circumferentially, events tend to be concentrated at the mold lines.
X-ray CT was also used to detect tube defects such as braid
misalignment and distortion. A radial cross section of the tube

Fiber mlsallgnment

€y,
percent

3.0
l 27
2.4

Stage 115, load = -26220.7 Ib

2.1
18
15
12
: 09
Y (load & e P 0.6

T_d'irection) Ve OO 03
X a 1 AL s

0.0

Fig. 14. Local strain variations in a pressurized tube, similar to straight-sided and
notched specimens. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

was generated as a flat image in order to identify circumferential
locations of these defects. This was used to identify the location
on the tube to be viewed with DIC or high speed video in order
to capture failure. An example of a circumferential tube cross sec-
tion showing braid distortion is shown in Fig. 13.

The tubes exhibit substantial local strain variation similar to
straight-sided specimens; this is shown in Fig. 14. Again, this var-
iation is also due to local damage creating artificially high strain
measurements where cracks occur. Several methods have been
investigated to deal with this local variation. These methods in-
clude optical extensometers, section line averaging, and radial
measurement with cylinder fitting. An example of AR/R (radial
strain measurement using the change in radius divided by original
radius) obtained using the cylindrical method is shown in Fig. 15.
This method uses a cylindrical coordinate system to measure
changes of the entire specimen to reduce the effects of local dam-
age on the measured hoop (transverse) strain. Substantially more
investigation of the strain state is needed to better understand
the material behavior. Additional details on the test and analysis
methods for partial internal pressurization will be provided by
Salem et al. [12].

Tube burst strengths for E862 composite are compared to
straight-sided and notched tensile strength in Table 1. Partial pres-
surization of tubes and notched tensile specimen results show com-
parable transverse strength estimates compared to axial tensile
strength. This confirms that the transverse straight-sided specimen
strengths are low compared to the strength in a structure and it is in
agreement with the values measured by the notch specimens. The
strength measured by the notch and current tube specimens may
still be low, however, because of the stress concentrations in the
notched coupons and the presence of defects in the current tube
specimens. Improvements to the manufacturing method for the
tubes, with the goal of reducing or eliminating such defects, are
ongoing.

& 3
0 Circumferential position, deg 360

Fig. 13. Flattened circular cross section X-ray CT image showing fiber distortion.
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Fig. 15. An example of the cylindrical method for calculating strains. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 1
Tube burst strength compared to straight-sided and notch specimens for E862 matrix
composite.

Straight-sided? Notched? Tube®
Tensile Strength T700S/E862 (MPa)
Axial 799.8 (5) 765.3 (2)
Transverse 461.9 (5) 813.6 (2) 627-1066

() =# of tests.
2 Average.
b Range (tubes are known to have defects).

5. Conclusions

A notched coupon geometry was evaluated against the stan-
dard, ASTM D3039 based straight-sided tensile coupons for use
with 2D triaxial braid composites. The notch specimen is simple
to fabricate and forces a tensile failure for transverse specimens.
Some of the limitations of this geometry are that it has a non-uni-
form gage region which results in a biaxial load state and it has
stress concentration effects due to the notches. Despite these lim-
itations, the notched coupon produced higher strength values com-
pared to the straight-sided coupon. A limited set of partial
pressurization tube tests produced a transverse tensile strength
value that would more closely represent the actual tensile strength
in a structure where failure is not influenced by free edges. The
tube specimen removes the effects of free edges from the test

but requires additional analysis and more complex and precise
manufacturing methods to avoid defects compared to flat panel
fabrication. The transverse strength measured by the notch speci-
mens was much closer to the tubes than the straight-sided cou-
pons. This indicates that the notched coupon should be used to
provide an increased lower bound for the true transverse strength
for these types of materials for the purpose of engineering compos-
ite structures. While the tubes serve as a validation test article for
research purposes, these tests are not easily performed. The
notched coupon provides a simple alternative for measuring trans-
verse tensile strength while overcoming the edge initiated shear
failure of the straight-sided coupon.
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