26 research outputs found

    Resemblance-Ranking Peptide Library to Screen for Binders to Antibodies on a Peptidomic Scale

    No full text
    A novel resemblance-ranking peptide library with 160,000 10-meric peptides was designed to search for selective binders to antibodies. The resemblance-ranking principle enabled the selection of sequences that are most similar to the human peptidome. The library was synthesized with ultra-high-density peptide arrays. As proof of principle, screens for selective binders were performed for the therapeutic anti-CD20 antibody rituximab. Several features in the amino acid composition of antibody-binding peptides were identified. The selective affinity of rituximab increased with an increase in the number of hydrophobic amino acids in a peptide, mainly tryptophan and phenylalanine, while a total charge of the peptide remained relatively small. Peptides with a higher affinity exhibited a lower sum helix propensity. For the 30 strongest peptide binders, a substitutional analysis was performed to determine dissociation constants and the invariant amino acids for binding to rituximab. The strongest selective peptides had a dissociation constant in the hundreds of the nano-molar range. The substitutional analysis revealed a specific hydrophobic epitope for rituximab. To show that conformational binders can, in principle, be detected in array format, cyclic peptide substitutions that are similar to the target of rituximab were investigated. Since the specific binders selected via the resemblance-ranking peptide library were based on the hydrophobic interactions that are widespread in the world of biomolecules, the library can be used to screen for potential linear epitopes that may provide information about the cross-reactivity of antibodies

    Irisin, physical activity and fitness status in healthy humans: No association under resting conditions in a cross-sectional study

    No full text
    Regular physical activity and physical fitness are closely related to a positive health status in humans. In this context, the muscle becomes more important due to its function as an endocrine organ. Muscle tissue secretes “myokines” in response to physical activity and it is speculated that these myokines are involved in physical activity induced positive health effects. Recently, the newly discovered myokine Irisin thought to be secreted by the muscle in response to physical activity and might be related to the health inducing effect by inducing browning of white adipose tissue. Speculating that myokines at least partly mediate exercise related health effects one would assume that regular physical activity and physical fitness are associated with resting Irisin concentrations in healthy humans. To investigate the association between resting Irisin concentration and either short-term physical activity, habitual physical activity, or physical fitness, data of 300 healthy participants from the cross-sectional KarMeN-study were analyzed. By applying different activity measurements we determined short-term and habitual physical activity, as well as physical fitness. Fasting serum samples were collected to determine resting Irisin concentrations by Enzyme-linked Immunosorbent Assay. Multivariate linear regression analysis served to investigate associations of the individual physical activity parameters with Irisin concentrations. Therefore, lean body mass and total fat mass (both determined by dual-energy X-ray absorptiometry) as well as age and parameters of glucose metabolism were included as confounders in multivariate linear regression analysis. Results showed that Irisin serum concentrations were not related to measures of physical activity and physical fitness in healthy humans under resting conditions, irrespective of the applied methods. Therefore we assume that if physical activity related effects are partly induced by myokines, permanently increased Irisin serum concentration may not be necessary to induce health-related exercise effects

    Data from: Irisin, physical activity and fitness status in healthy humans: no association under resting conditions in a cross-sectional study

    No full text
    Regular physical activity and physical fitness are closely related to a positive health status in humans. In this context, the muscle becomes more important due to its function as an endocrine organ. Muscle tissue secretes "myokines" in response to physical activity and it is speculated that these myokines are involved in physical activity induced positive health effects. Recently, the newly discovered myokine Irisin thought to be secreted by the muscle in response to physical activity and might be related to the health inducing effect by inducing browning of white adipose tissue. Speculating that myokines at least partly mediate exercise related health effects one would assume that regular physical activity and physical fitness are associated with resting Irisin concentrations in healthy humans. To investigate the association between resting Irisin concentration and either short-term physical activity, habitual physical activity, or physical fitness, data of 300 healthy participants from the cross-sectional KarMeN-study were analyzed. By applying different activity measurements we determined short-term and habitual physical activity, as well as physical fitness. Fasting serum samples were collected to determine resting Irisin concentrations by Enzyme-linked Immunosorbent Assay. Multivariate linear regression analysis served to investigate associations of the individual physical activity parameters with Irisin concentrations. Therefore, lean body mass and total fat mass (both determined by dual-energy X-ray absorptiometry) as well as age and parameters of glucose metabolism were included as confounders in multivariate linear regression analysis. Results showed that Irisin serum concentrations were not related to measures of physical activity and physical fitness in healthy humans under resting conditions, irrespective of the applied methods. Therefore we assume that if physical activity related effects are partly induced by myokines, permanently increased Irisin serum concentration may not be necessary to induce health-related exercise effects

    Image3_Acute effects of moderate vs. vigorous endurance exercise on urinary metabolites in healthy, young, physically active men—A multi-platform metabolomics approach.JPEG

    No full text
    Introduction: Endurance exercise alters whole-body as well as skeletal muscle metabolism and physiology, leading to improvements in performance and health. However, biological mechanisms underlying the body’s adaptations to different endurance exercise protocols are not entirely understood.Methods: We applied a multi-platform metabolomics approach to identify urinary metabolites and associated metabolic pathways that distinguish the acute metabolic response to two endurance exercise interventions at distinct intensities. In our randomized crossover study, 16 healthy, young, and physically active men performed 30 min of continuous moderate exercise (CME) and continuous vigorous exercise (CVE). Urine was collected during three post-exercise sampling phases (U01/U02/U03: until 45/105/195 min post-exercise), providing detailed temporal information on the response of the urinary metabolome to CME and CVE. Also, fasting spot urine samples were collected pre-exercise (U00) and on the following day (U04). While untargeted two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) led to the detection of 608 spectral features, 44 metabolites were identified and quantified by targeted nuclear magnetic resonance (NMR) spectroscopy or liquid chromatography-mass spectrometry (LC-MS).Results: 104 urinary metabolites showed at least one significant difference for selected comparisons of sampling time points within or between exercise trials as well as a relevant median fold change >1.5 or 2.0 or Discussion: To conclude, this study provided first evidence of specific urinary metabolites as potential metabolic markers of endurance exercise intensity. Future studies are needed to validate our results and to examine whether acute metabolite changes in urine might also be partly reflective of mechanisms underlying the health- or performance-enhancing effects of endurance exercise, particularly if performed at high intensities.</p
    corecore