220 research outputs found

    Network-based stratification analysis of 13 major cancer types using mutations in panels of cancer genes.

    Get PDF
    BACKGROUND: Cancers are complex diseases with heterogeneous genetic causes and clinical outcomes. It is critical to classify patients into subtypes and associate the subtypes with clinical outcomes for better prognosis and treatment. Large-scale studies have comprehensively identified somatic mutations across multiple tumor types, providing rich datasets for classifying patients based on genomic mutations. One challenge associated with this task is that mutations are rarely shared across patients. Network-based stratification (NBS) approaches have been proposed to overcome this challenge and used to classify tumors based on exome-level mutations. In routine research and clinical applications, however, usually only a small panel of pre-selected genes is screened for mutations. It is unknown whether such small panels are effective in classifying patients into clinically meaningful subtypes. RESULTS: In this study, we applied NBS to 13 major cancer types with exome-level mutation data and compared the classification based on the full exome data with those focusing only on small sets of genes. Specifically, we investigated three panels, FoundationOne (240 genes), PanCan (127 genes) and TruSeq (48 genes). We showed that small panels not only are effective in clustering tumors but also often outperform full exome data for most cancer types. We further associated subtypes with clinical data and identified 5 tumor types (CRC-Colorectal carcinoma, HNSC-Head and neck squamous cell carcinoma, KIRC-Kidney renal clear cell carcinoma, LUAD-Lung adenocarcinoma and UCEC-Uterine corpus endometrial carcinoma) whose subtypes are significantly associated with overall survival, all based on small panels. CONCLUSION: Our analyses indicate that effective patient subtyping can be carried out using mutations detected in smaller gene panels, probably due to the enrichment of clinically important genes in such panels

    Potential of textile hemp in biomedical and composite applications

    Full text link
    The fabrication of hemp fine powder was documented for the first time. The antibacterial properties of hemp powders and hemp plant extracts from textile hemp were investigated for the first time. Fabrication and characteristics of hemp powder blended polypropylene polymer composite filaments were investigated for the first time

    Site-specific selection reveals selective constraints and functionality of tumor somatic mtDNA mutations.

    Get PDF
    BACKGROUND: Previous studies have indicated that tumor mitochondrial DNA (mtDNA) mutations are primarily shaped by relaxed negative selection, which is contradictory to the critical roles of mtDNA mutations in tumorigenesis. Therefore, we hypothesized that site-specific selection may influence tumor mtDNA mutations. METHODS: To test our hypothesis, we developed the largest collection of tumor mtDNA mutations to date and evaluated how natural selection shaped mtDNA mutation patterns. RESULTS: Our data demonstrated that both positive and negative selections acted on specific positions or functional units of tumor mtDNAs, although the landscape of these mutations was consistent with the relaxation of negative selection. In particular, mutation rate (mutation number in a region/region bp length) in complex V and tRNA coding regions, especially in ATP8 within complex V and in loop and variable regions within tRNA, were significantly lower than those in other regions. While the mutation rate of most codons and amino acids were consistent with the expectation under neutrality, several codons and amino acids had significantly different rates. Moreover, the mutations under selection were enriched for changes that are predicted to be deleterious, further supporting the evolutionary constraints on these regions. CONCLUSION: These results indicate the existence of site-specific selection and imply the important role of the mtDNA mutations at some specific sites in tumor development

    Research on adaptive impedance control technology of upper limb rehabilitation robot based on impedance parameter prediction

    Get PDF
    Introduction: With the aggravation of aging and the growing number of stroke patients suffering from hemiplegia in China, rehabilitation robots have become an integral part of rehabilitation training. However, traditional rehabilitation robots cannot modify the training parameters adaptively to match the upper limbs’ rehabilitation status automatically and apply them in rehabilitation training effectively, which will improve the efficacy of rehabilitation training.Methods: In this study, a two-degree-of-freedom flexible drive joint rehabilitation robot platform was built. The forgetting factor recursive least squares method (FFRLS) was utilized to estimate the impedance parameters of human upper limb end. A reward function was established to select the optimal stiffness parameters of the rehabilitation robot.Results: The results confirmed the effectiveness of the adaptive impedance control strategy. The findings of the adaptive impedance control studies showed that the adaptive impedance control had a significantly greater reward than the constant impedance control, which was in line with the simulation results of the variable impedance control. Moreover, it was observed that the levels of robot assistance could be suitably modified based on the subject’s different participation.Discussion: The results facilitated stroke patients’ upper limb rehabilitation by enabling the rehabilitation robot to adaptively change the impedance parameters according to the functional status of the affected limb. In clinic therapy, the proposed control strategy may help to adjust the reward function for different patients to improve the rehabilitation efficacy eventually

    The genome of Apis mellifera: dialog between linkage mapping and sequence assembly

    Get PDF
    Two independent genome projects for the honey bee, a microsatellite linkage map and a genome sequence assembly, have interactively produced an almost complete organization of the euchromatic genome

    Cell-free circulating mitochondrial DNA content and risk of hepatocellular carcinoma in patients with chronic HBV infection.

    Get PDF
    Recent studies have demonstrated a potential link between circulating cell-free mitochondrial DNA (mtDNA) content and cancers. However, there is no study evaluating the association between circulating mtDNA as a non-invasive marker of hepatocellular carcinoma (HCC) risk. We conducted a nested case-control study to determine circulating mtDNA content in serum samples from 116 HBV-related HCC cases and 232 frequency-matched cancer-free HBV controls, and evaluate the retrospective association between mtDNA content and HCC risk using logistic regression and their temporal relationship using a mixed effects model. HCC cases had significantly lower circulating mtDNA content than controls (1.06 versus 2.47, P = 1.7 × 10(-5)). Compared to HBV patients with higher mtDNA content, those with lower mtDNA content had a significantly increased risk of HCC with an odds ratio (OR) of 2.19 (95% confidence interval [CI] 1.28-3.72, P = 0.004). Quartile analyses revealed a significant dose-dependent effect (Ptrend = 0.001) for this association. In a pilot longitudinal sub-cohort of 14 matched cases-control pairs, we observed a trend of dramatically decreased mtDNA content in cases and slightly decreased mtDNA content in controls, with a significant interaction of case-control status with time (Pinteraction = 0.049). Our findings suggest that circulating mtDNA is a potential novel non-invasive biomarker of HCC risk in HBV patients

    Artificial Intelligence Framework Identifies Candidate Targets for Drug Repurposing in Alzheimer’s Disease

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified numerous susceptibility loci for Alzheimer’s disease (AD). However, utilizing GWAS and multi-omics data to identify high-confidence AD risk genes (ARGs) and druggable targets that can guide development of new therapeutics for patients suffering from AD has heretofore not been successful. Methods: To address this critical problem in the field, we have developed a network-based artificial intelligence framework that is capable of integrating multi-omics data along with human protein–protein interactome networks to accurately infer accurate drug targets impacted by GWAS-identified variants to identify new therapeutics. When applied to AD, this approach integrates GWAS findings, multi-omics data from brain samples of AD patients and AD transgenic animal models, drug-target networks, and the human protein–protein interactome, along with large-scale patient database validation and in vitro mechanistic observations in human microglia cells. Results: Through this approach, we identified 103 ARGs validated by various levels of pathobiological evidence in AD. Via network-based prediction and population-based validation, we then showed that three drugs (pioglitazone, febuxostat, and atenolol) are significantly associated with decreased risk of AD compared with matched control populations. Pioglitazone usage is significantly associated with decreased risk of AD (hazard ratio (HR) = 0.916, 95% confidence interval [CI] 0.861–0.974, P = 0.005) in a retrospective case-control validation. Pioglitazone is a peroxisome proliferator-activated receptor (PPAR) agonist used to treat type 2 diabetes, and propensity score matching cohort studies confirmed its association with reduced risk of AD in comparison to glipizide (HR = 0.921, 95% CI 0.862–0.984, P = 0.0159), an insulin secretagogue that is also used to treat type 2 diabetes. In vitro experiments showed that pioglitazone downregulated glycogen synthase kinase 3 beta (GSK3β) and cyclin-dependent kinase (CDK5) in human microglia cells, supporting a possible mechanism-of-action for its beneficial effect in AD. Conclusions: In summary, we present an integrated, network-based artificial intelligence methodology to rapidly translate GWAS findings and multi-omics data to genotype-informed therapeutic discovery in AD

    Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin

    Get PDF
    Abstract Background Although analysis pipelines have been developed to use RNA-seq to identify long non-coding RNAs (lncRNAs), inference of their biological and pathological relevance remains a challenge. As a result, most transcriptome studies of autoimmune disease have only assessed protein-coding transcripts. Results We used RNA-seq data from 99 lesional psoriatic, 27 uninvolved psoriatic, and 90 normal skin biopsies, and applied computational approaches to identify and characterize expressed lncRNAs. We detect 2,942 previously annotated and 1,080 novel lncRNAs which are expected to be skin specific. Notably, over 40% of the novel lncRNAs are differentially expressed and the proportions of differentially expressed transcripts among protein-coding mRNAs and previously-annotated lncRNAs are lower in psoriasis lesions versus uninvolved or normal skin. We find that many lncRNAs, in particular those that are differentially expressed, are co-expressed with genes involved in immune related functions, and that novel lncRNAs are enriched for localization in the epidermal differentiation complex. We also identify distinct tissue-specific expression patterns and epigenetic profiles for novel lncRNAs, some of which are shown to be regulated by cytokine treatment in cultured human keratinocytes. Conclusions Together, our results implicate many lncRNAs in the immunopathogenesis of psoriasis, and our results provide a resource for lncRNA studies in other autoimmune diseases.http://deepblue.lib.umich.edu/bitstream/2027.42/110307/1/13059_2014_Article_570.pd
    • …
    corecore