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Abstract

with overall survival, all based on small panels.

Background: Cancers are complex diseases with heterogeneous genetic causes and clinical outcomes. It is critical to
classify patients into subtypes and associate the subtypes with clinical outcomes for better prognosis and treatment.
Large-scale studies have comprehensively identified somatic mutations across multiple tumor types, providing rich
datasets for classifying patients based on genomic mutations. One challenge associated with this task is that
mutations are rarely shared across patients. Network-based stratification (NBS) approaches have been proposed to
overcome this challenge and used to classify tumors based on exome-level mutations. In routine research and
clinical applications, however, usually only a small panel of pre-selected genes is screened for mutations. It is
unknown whether such small panels are effective in classifying patients into clinically meaningful subtypes.

Results: In this study, we applied NBS to 13 major cancer types with exome-level mutation data and compared
the classification based on the full exome data with those focusing only on small sets of genes. Specifically, we
investigated three panels, FoundationOne (240 genes), PanCan (127 genes) and TruSeq (48 genes). We showed
that small panels not only are effective in clustering tumors but also often outperform full exome data for most
cancer types. We further associated subtypes with clinical data and identified 5 tumor types (CRC-Colorectal
carcinoma, HNSC-Head and neck squamous cell carcinoma, KIRC-Kidney renal clear cell carcinoma, LUAD-Lung
adenocarcinoma and UCEC-Uterine corpus endometrial carcinoma) whose subtypes are significantly associated

Conclusion: Our analyses indicate that effective patient subtyping can be carried out using mutations detected in
smaller gene panels, probably due to the enrichment of clinically important genes in such panels.

Background

Cancers are complex diseases with highly heterogeneous
causes and clinical outcomes. At the molecular level histo-
logically and clinically similar patients often exhibit drasti-
cally distinct genomic aberrations. Large-scale studies
such as The Cancer Genome Atlas (TCGA) have compre-
hensively cataloged multi-layered genomic aberrations in
multiple cancers [1,2]. Identification of clinically meaning-
ful subtypes of tumors based on molecular patterns is
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1Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
“Center for Quantitative Sciences, Vanderbilt University, Nashville, TN, USA
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critical to provide insights into the biological mechanisms
of tumor progression and to guide better treatment and
prognosis. Most previous studies of tumor classification
utilized messenger RNA (mRNA) expression [3-5], which
often yielded subtypes that are not highly predictive of
clinical outcomes [1,6]. On the other hand, somatic muta-
tions, which often disrupt the function of mutated genes,
provide insights not only to the mechanisms of tumori-
genesis and progression but also the candidates for tar-
geted therapy [7-9]. Therefore classification of patients
based on somatic mutations may provide more effective
clinical guidance. However, mutations are rarely shared
across patients [10,11] so that the similarity between
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tumors cannot be directly measured based on mutated
genes. Network-based stratification (NBS) was recently
proposed to overcome this challenge by leveraging infor-
mation provided in protein-protein interaction networks
(PPI) [12]. Briefly, NBS uses label propagation on PPI to
assign higher values to non-mutated genes that are closer
to genes (in PPI) that harbor mutations. This guilt-by-
association principle governed by genetic networks has
many applications for biological discovery utilizing prior
knowledge [13,14]. For somatic mutations in genes, this
principle fits well with the underlying biology: driver genes
are often interacting directly or indirectly in common
pathways and mutations in different genes in the same
pathway are likely to cause genetically similar tumors
[11,15-18]. NBS has been applied on several cancers using
exome-level mutation data and showed improved associa-
tion of subtypes with clinical outcomes than using mRNA
data [12]. In general NBS provides a unified framework to
further investigate tumor subtyping by integrating somatic
mutations with biological networks.

Exome-level mutations were used in previous NBS ana-
lyses. In routine research and clinical application, instead
of exome sequencing, a viable cost-effective alternative is
to screen mutations in a panel of pre-selected cancer
genes [19,20]. It is unknown whether such small panels
are effective in classifying patients into clinically meaning-
ful subtypes. Although exome sequencing provides com-
prehensive characterization of coding mutations, it is likely
that a large portion of mutations are passengers, as it was
estimated that few mutations in a patient are drivers (e.g.
ranging from 2 to 8) [16,21]. Such passengers, if included
in the analysis, may obscure clinically and biologically
important mutations. On the other hand, gene panels are
usually designed to include known driver genes or genes
involved in important pathways, resulting in highly
enriched signal vs. noise. We reasoned that a panel of can-
cer genes, although likely that some important genes were
not included, may provide adequate mutation information
for effective subtyping. It is an important issue to investi-
gate since ultimately it is only practical to routinely screen
a panel of genes in clinical settings.

In this study, we set out to evaluate the effectiveness of
various gene panels on classifying tumors into clinically
meaningful subtypes. Specifically, we collected three
panels for evaluation, representing different numbers of
genes: FoundationOne, PanCan and TruSeq. Briefly,
FoundationOne panel includes 240 genes; PanCan was
derived from 12 cancer types analyzed by TCGA and
includes 127 genes [16]; TruSeq was developed by Illu-
mina and includes 48 genes. We applied the NBS
approach to 13 major cancer types with a total of ~4000
solid tumor samples profiled by exome-sequencing, using
the full exome-level mutation data (termed “Full” dataset)
as well as the three cancer panels.
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Materials & methods

Cancer gene panels and mutation data

Three gene panels were investigated: FoundationOne
(June 2014 version) (http://foundationone.com/genelist1.
php), PanCan 127-gene panel [16] and TrueSeq (http://
www.illumina.com/products/truseq_amplicon_cancer_-
panel.ilmn). The relationship of the gene lists in the
three panels is illustrated in Figure 1.

We initially collected mutation data on ~ 4700 solid
tumors of 21 major cancer types that were profiled by
exome-sequencing and investigated previously [10]
(http://cancergenome.broadinstitute.org). In this study,
we focus on mutations that are non-synonymous,
occurred on splice sites or stop codons (termed “func-
tional” mutations). In contrast, the non-functional
mutations refer to the synonymous mutations and
mutations in intronic or intergenic regions. Samples
with too few mutations were treated as outliers and
excluded from analysis. Specifically, samples with no
mutations in gene panels or fewer than 6 functional
mutations in exomes were discarded. Several cancer
types, such as CARC, CLL, DLBCL and LAML that are
low in mutation rates have only dozens of samples
after filtering. These cancer types were excluded from
further analyses. Due to the extreme molecular similar-
ity between colon and rectal cancers [22], we combined
these two into a single CRC dataset. Finally, we are left
with 13 cancer types with a total of ~4000 samples
(Table 1) (See Table S2 in Additional file for all 21
cancer types). For each sample we coded a gene as 1 if
it has at least one functional mutation and zero other-
wise. The mutation profile per patient is represented
by a vector of genes marked with 1’s (mutated) or 0’s
(not mutated).

Gene interaction network

HumanNet [23] v.1 (http://www.functionalnet.org/
humannet/download.html) with the top 10 percent most
confident edges were used as the gene-to-gene interac-
tion network. Mutations were mapped to genes on this
network for label propagation (see below). This gene
interaction network was also transformed into a k-near-
est-neighbors graph by connecting vertices (i.e. genes) v;
and v; if v; is among the k-nearest neighbors of v; or if v;
is among the k-nearest neighbors of v;. The result is a
symmetric connectivity matrix, which was used to derive
the graph Laplacian in network-regularized NMF (see
below).

Network propagation

Let n be the number of patients, m be the number of
genes, Fo be the initial gene x patient matrix (mx#n
matrix), and A be the symmetric adjacency matrix
representing gene-to-gene interaction network (mxm
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matrix). The network propagation process is carried out
by the following iterative algorithm [12]:

F[+1=a'A'Ft+(l_a)'F0 (1)

We set a = 0.7 as previously described [12]. The pro-
pagation function was run iteratively until F, converges
(|Fes1 -F¢| < 0.001). Following the propagation, quantile
normalization was applied to F, to ensure each patient
follows the same distribution for the smoothed mutation

profile. We use F to denote the final normalized and
smoothed mutation matrix.

Network-regularized NMF

Non-negative matrix factorization (NMF) aims to decom-
pose a matrix into two lower rank non-negative matrices
whose product can well approximate the original matrix
[24]. We applied network-regularized NMF to constrain
NMF to respect the structure of the underlying gene

Table 1. Sample sizes of 13 tumor types before and after filtering to ensure sufficient mutations per sample and total

samples
Cancer®? Sample size Full FoundationOne PanCan TrueSeq
(# mutations = 6) (# mutations = 1) (# mutations = 1) (# mutations =1)

BLCA 99 99 (100%) 97(98%) 95 (96%) 84 (85%)
BRCA 887 849 (96%) 661 (75%) 647 (73%) 528 (60%)
CRC 233 233 (100%) 227 (97%) 226 (97%) 219 (94%)
ESO 140 140 (100%) 133 (95%) 125 (89%) 112 (80%)
GBM 291 288 (99%) 247 (85%) 237 (81%) 199 (68%)
HNSC 384 372 (97%) 357 (93%) 347 (90%) 303 (79%)
KIRC 417 4 (99%) 328 (79%) 310 (74%) 220 (53%)
LUAD 398 1 (98%) 372 (93%) 359 (90%) 322 (81%)
LUSC 176 176 (100%) 176 (100%) 175 (99%) 158 (90%)
MEL 118 118 (100%) 117 (99%) 113 (96%) 112 (95%)
MM 204 200 (98%) 157 (77%) 146 (72%) 121(59%)
ov 316 3 (99%) 276 (87%) 281 (89%) 238 (75%)
UCEC 247 247 (100%) 245 (%99) 242 (98%) 229 (93%)
Total 4143 4008

?BLCA-Bladder urothelial carcinoma; BRCA-Breast invasive carcinoma; CRC-Colorectal carcinoma; ESO-Esophageal adenocarcinoma; GBM-Glioblastoma multiforme;
HNSC-Head and neck squamous cell carcinoma; KIRC-Kidney renal clear cell carcinoma; LUAD-Lung adenocarcinoma; LUSC-Lung squamous cell carcinoma; MEL-
Melanoma; MM-Multiple myeloma; OV-Ovarian serous cystadenocarcinoma; UCEC-Uterine corpus endometrial carcinoma

PCancer types with survival data: BLCA, BRCA, CRC, ESO, GBM, HNSC, KIRC, LUAD, LUSC, OV,UCEC.
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interaction network as previously described [25]. The
objective is to minimize the following function:

minw, y-o||F — WHI|} + A trace(W'LW) (2)

where || - ||F denotes the matrix Frobenius norm, W is
an m by K matrix and H is a K by n matrix, with entries
in both W and H non-negative. W is a collection of
basis vectors or “metagenes”, and H contains the loading
of the basis. The value K controls the dimension reduc-
tion, and we used K = 3,4,5,6 in this study. L is the
graph Laplacian of a k-nearest-neighbor network. We
chose k = 11 as previously described [12]. A is the regu-
larization parameter and the value was set as 200, which
is on the same scale as previously described [25]. The
iterative algorithm proposed in Cai et al [25] was used
to find solutions W and H. The iteration was run until
the objective function converges (|F,; -F; | < 0.1).

Consensus clustering

In order to achieve robust clustering, we used consensus
clustering [26] to generate final clustering of patients.
Specifically, we ran network-regulated NMF using a ran-
dom sample without replacement of 80% patients to con-
struct a clustering, and repeated this process 500 times.
The collection of 500 clustering results was used to con-
struct the similarity matrix, which records the frequency
with which each pair of patients was observed to share
the same membership among all replicates. Hierarchical
clustering with average linkage was generated based on
the similarity matrix using the R “NMF” package. We
used cophenetic correlation coefficient (ccc) to assess the
dispersion of the consensus matrix as previously
described [27] also using the R “NMF” package.

Survival analysis

Survival analysis was performed using the R “survival”
package. Kaplan-Meier survival curves were plotted for
each NBS subtype and log-rank tests were performed to
test the association of subtypes with survival. Fisher’s exact
tests were used to test the association of subtypes with
tumor grade or stage.

Results

Clustering patterns

We examined the clustering patterns of 13 cancer types
for each of the gene sets (the three panels plus the Full
dataset) by applying the NBS approach. The clustering
outcomes (K = 3, 4, 5, 6) for each of the 13 cancer types
were displayed in Supplemental Fig. S1-S13 (Additional
file). Overall, we observed different clustering patterns
across four sets of genes for a given cancer type and a
rank K. For most cases, the smallest panel (TrueSeq) pro-
duced the clearest stratification while for the Full data the
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stratifications are less clear (e.g., ESO, GBM, KIRC, MM).
In a few cases similar patterns were observed for different
gene panels (e.g., CRC, HNSC). FoundationOne and pan-
Can panels often produced clusters of unbalanced sizes.
Among the three panels, FoundationOne and PanCan
tend to produce similar patterns (e.g., KIRC, HNSC, GBM,
LUAD, MM). For a few cancers (e.g., LUSC, OV) all three
panels generated similar patterns. For a fixed panel, the
clustering outcome appears insensitive to K (e.g., BLCA,
KIRC, HNSC, LUSC, MEL and MM). The goodness of the
cluster separation was assessed using the cophenetic cor-
relation coefficient (ccc) and for clusters that exhibit clear
patterns the ccc values are over 0.99. Consistent with the
visual impression, the TrueSeq panel in general gave the
clearest separation (median of ccc = 0.988), followed by
PanCan (median ccc = 0.982), FoundationOne (median
ccc = 0.972) and the Full set (median cccc = 0.627).

NBS subtypes associated with clinical data

We first investigated the association between clusters
and survival and found that not all subtypes are asso-
ciated with survival. Of the 11 cancer types with survival
information available, 5 (CRC, HNSC, KIRC, LUAD and
UCEC) showed significant association between NBS
subtypes and survival (log-rank test p-value < 0.05)
(Table 2). Such significant associations were observed
for certain gene panels and cluster numbers (Table 2).
For example, when the UCEC samples were classified
into 6 clusters using the TrueSeq panel, the clusters
were well-separated, differed in survival (log-rank test
p-value = 1.2e-6) and were balanced in cluster size (see
Figure 2A-2B). Also with the TrueSeq panel, the CRC
samples were classified into 3 clusters with significant
association with survival (Figure 2C-D). Among the can-
cer types with survival data, only OV showed a signifi-
cant association of subtypes with survival using the Full
dataset (log-rank p-value 0.02) with K = 3. This is in
contrast to the gene panels as listed in Table 2, under
which significant (or marginally significant) associations
between subtypes and survival were observed across
multiple tumors and multiple K’s (Figure S15-S17 in
Additional file).

Table 2. Significant associations between NBS subtypes
(clusters) and survival in 5 tumor types using 3 gene
panels

Tumor Panel K p-value
CRC TruSeq 3 0.036
HNSC TruSeq 4 0.02
KIRC PanCan 3 0.02
LUAD PanCan 3 11107
UCEC TruSeq 6 12%10°
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We then investigated the association between clusters
and tumor grade/stage. Of the cancer types (HNSC, KIRC,
OV, UCEC) with grade or stage information available, we
found no association between NBS subtypes and tumor
grade/stage except for UCEC. As shown in Figure 2, the
subtypes of UCEC tumors with relatively poor survival
(red, pink) were also enriched for high grade (p = 0.03,
Fisher exact test).

For some tumor types, e.g. HNSC, KIRC and CRC, dif-
ferent K values generated nested subtypes (Fig. S15-S17 in
Additional file). For example, for HNSC the yellow cluster
for K = 3 was further divided into yellow and black clus-
ters for K = 4, and the black cluster for K = 4 was further
divided into black and pink clusters for K = 5, while all
other clusters remain the same (Fig. S15 in Additional
file). For larger K values, NBS classified patients into finer
subgroups with distinct survival curves, and as a result the
significance of association of survival with subtypes is con-
sistent across different K’s (Fig. S15 in Additional file).

Similar nested patterns were observed in KIRC and CRC
(Fig. S16,S17 in Additional file).

We further examined the mutation patterns (before net-
work smoothing) of UCEC and CRC that showed signifi-
cant associations with survival using the TruSeq panel. In
UCEC 6 subtypes were discovered. The cluster 2 (blue)
has the best survival, and cluster 1 (red) and 6 (pink) are
the worst (Figure 2A). The mutation patterns showed
that cluster 2 harbors more mutations than other clusters
(Figure 3A). It was observed that POLE is associated with
hypermutations in UCEC [2] but this gene is absent in the
TruSeq panel. We calculated the mutation frequency of
POLE in these clusters and found that 32% of patients in
cluster 2 have POLE mutations compared to 0-8% in other
clusters, indicating that important mutation signatures can
be captured by a panel of genes via NBS although the sig-
nature gene was not included in the panel. Cluster 1 (red)
is the second worst survival cluster and a distinct signature
is the high frequency of TP53 mutations compared to
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others (Figure 3A). Only 7 patients are in the worst cluster
6 (pink) and it is not clear what signatures are associated
with this subtype due to the small size of the cluster. Over-
all, the clustering based on this small panel is highly con-
sistent with that obtained previously, which was based on
integrative analyses of multiple platforms [2]. For CRC,
there are no clear mutation patterns in the gene panel
(Figure 3B), and the separation of the better survival clus-
ter (cluster 1, red, Figure 2C,D) from others may be due to
complex combination of gene mutations linked through
the biological network.

To investigate the effectiveness of traditional clustering
approaches on mutation data, we applied hierarchical
clustering on the mutation data without network
smoothing of the 5 tumors that showed significant asso-
ciations with survival. All of the tumors except UCEC
failed to produce clear clustering, and essentially all sam-
ples were clustering into a single group (data not shown).
Although UCEC showed separable subtypes, such sub-
types are not associated with survival, indicating that
clustering without NBS failed to capture clinically rele-
vant pathways that are encoded in protein interaction
networks.

Our results were consistent with the previous work in
which NBS approach was applied to three cancers: OV,
UCEC and LUAD [12]. Using the full exome-level func-
tional mutation data, we observed classification of UCEC

samples into 3 clusters with no significant difference in
survival (log-rank test p-value = 0.63) (Fig. S14 in Addi-
tional file), similar to the result reported previously [12].
We also observed significant association between OV
subtypes and survival (log-rank p = 0.02) (Fig. S14 in
Additional file), although the significance levels are not
the same, probably due to different samples used in the
two studies (e.g ~1/3 samples are different due to differ-
ences in downloaded data).

Discussion

Exome and whole genome sequencing have identified
somatic mutations across multiple tumors; however
most mutations are deemed passengers. Comprehensive
analyses have pinpointed important genes and pathways
that drive tumor progression. This enables the classifica-
tion of patients into genetically distinct subtypes so that
biologically driven prognostication and therapy selection
become feasible in clinic. Network-based approaches
integrate mutations and protein interaction networks to
achieve knowledge-guided subtyping and have shown
promises in linking subtypes with clinical data. In this
study we showed that using a panel of important genes
can achieve superior classification than using the full
exome-level mutations, and often has better predictive
performance of clinical outcome as well. Due to exten-
sive tumor heterogeneity, however, it is infeasible to
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design a single panel to fit all cancers. The performance
of a gene panel will likely depend on specific tumor
types. We investigated three panels with different con-
tents and numbers of genes in an effort to span a range
of scenarios. For optimal performance it may warrant a
focused investigation if a custom gene panel is to be
designed for a specific tumor type.

NBS approaches leverage prior knowledge of protein
interaction networks to overcome the challenge of the
sparsity of somatic mutations. It is unclear, however,
how to construct an optimal network used in NBS. It is
expected that biological networks in different organs or
tissues are different, and some genes in the network
may not even be expressed in certain tissues. Other
complicating factors in the NBS procedure involve var-
ious tuning parameters, such as the o in the network
propagation step, the y in the graph-regularization of
the NMF. Together with the influence of the genes in
panels, it is unclear how to obtain robust and consistent
subtyping. For example, some tumor types have clear
clustering of patients but the subtypes are not associated
with clinical outcomes. For such cases it is also possible
that clinical relevant tumor subtypes, if present, are dri-
ven by other mechanisms, such as methylation or copy
number aberration, instead of somatic mutations. It is
generally unknown a priori what strategy is optimal in
tumor classification for clinic use, and more integrative
analyses across large cohorts may provide further gui-
dance towards this goal.

The motivation behind NBS is to deal with the spar-
sity of mutation data. For mutations that are frequently
observed in multiple patients, it may be tempting to
apply clustering methods on the sparse mutation data
without network smoothing. Our results showed that
even in subtypes that are enriched for specific muta-
tions, e.g. UCEC, it is crucial to leverage prior knowl-
edge encoded in gene networks to classify patients into
clinically relevant subtypes. Gene interaction networks
used in the NBS approach are not merely to deal with
the sparsity of mutations but to provide meaningful bio-
logical knowledge to have effective subtyping. It may be
true in general that NBS is beneficial for subtyping for
other somatic mutation data and effectiveness of NBS in
other scenarios needs further exploration.

Conclusion

We applied NBS to 13 major cancer types using both
exome-level mutation data and panels of genes for clas-
sification and showed that small panels are often more
effective in clustering tumors than full exome data. In
addition, subtypes discovered by panels of genes in 5
tumor types (CRC, HNSC, KIRC, LUAD and UCEC) are
significantly associated with patient survival, while sub-
types based on full exome mutations are less predictive
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of clinical data. Screening of panels of genes combined
with the NBS analysis strategy has potential for clinical
use and the performance may be further improved by
selection of clinically important genes and proper gene
interaction networks.
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