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Introduction: With the aggravation of aging and the growing number of stroke
patients suffering from hemiplegia in China, rehabilitation robots have become an
integral part of rehabilitation training. However, traditional rehabilitation robots
cannot modify the training parameters adaptively to match the upper limbs’
rehabilitation status automatically and apply them in rehabilitation training
effectively, which will improve the efficacy of rehabilitation training.

Methods: In this study, a two-degree-of-freedom flexible drive joint rehabilitation
robot platform was built. The forgetting factor recursive least squares method
(FFRLS) was utilized to estimate the impedance parameters of human upper limb
end. A reward function was established to select the optimal stiffness parameters
of the rehabilitation robot.

Results: The results confirmed the effectiveness of the adaptive impedance control
strategy. The findings of the adaptive impedance control studies showed that the
adaptive impedance control had a significantly greater reward than the constant
impedance control, which was in line with the simulation results of the variable
impedance control. Moreover, it was observed that the levels of robot assistance
could be suitably modified based on the subject’s different participation.

Discussion: The results facilitated stroke patients’ upper limb rehabilitation by
enabling the rehabilitation robot to adaptively change the impedance parameters
according to the functional status of the affected limb. In clinic therapy, the
proposed control strategy may help to adjust the reward function for different
patients to improve the rehabilitation efficacy eventually.
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1 Introduction

Stroke is globally recognized as the second leading cause of both disability andmortality (Sun
et al., 2022). The incidence of stroke worldwide reached 13.7 million new cases, with China alone
accounting for 3.94 million new cases (Ma et al., 2021; Vasu et al., 2021). The severity of stroke
affects the probability of hemiplegia, as well as the changes in gait speed, balance, spasticity, and
range of motion (Hong et al., 2018). With the aggravation of aging and the growing number of
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stroke patients suffering from hemiplegia in China, the impact of stroke
is becoming increasingly noticeable (Honghai et al., 2022). The current
number of rehabilitation physicians and therapists is hard to meet the
needs of rehabilitation training for the numerous hemiplegic patients.
The rehabilitation robot is the outcome of the fusion between robot
technology and rehabilitation engineering, which may assist patients
with rehabilitation training to a great extent by replacing rehabilitation
physicians. Fabio et al. proved the feasibility and effectiveness of hand
rehabilitation assisted by rehabilitation robot (Vanoglio et al., 2016).
Rehabilitation robot offers several advantages over traditional therapy
performed by therapists, including consistent delivery of therapy,
objective and quantitative assessment, and virtual reality interfaces to
enhance the rehabilitation experience (Wang et al., 2019). The
traditional upper limb rehabilitation robot can only perform the
programmed rehabilitation movements repeatedly, lacking the ability
to adaptively adjust the training parameters based on the affected limb’s
participation during active rehabilitation training. Therefore, robot-
assisted rehabilitation can more effectively motivate patients to
complete their rehabilitation training (Islam et al., 2021).

The impedance parameter of the upper limb is a useful method to
evaluate the extent of the affected limb’s engagement in rehabilitation
exercises, and impedance control is a widely-used technique for
regulating the levels of assistance provided by robotic systems during
rehabilitation training (Perez-Ibarra et al., 2015). In order to provide
appropriate assistant force in training, different control strategies have
been proposed by relevant studies. Perez Ibarra et al. conducted two
adaptive impedance control strategies and indicated that incorporating
the damping parameters of patients into the patient impedance model
could enhance the velocity correlation (Perez-Ibarra et al., 2019). Krebs
et al. developed an impedance control algorithm based on performance
metrics such as speed, time, or EMG signals to adaptively adjust the
duration and levels of assistance provided by the robot duringmovement
(Krebs et al., 2003). In order to adjust the interaction change between the
human-machine system,Wolbrecht combined themodel-based adaptive
impedance control with real-time torque calculation as feed-forward for
the affected limb (Wolbrecht et al., 2008). Losey et al. proposed a
sensorless force estimation component to evaluate the patient’s ability
state and subsequently modified the training mode of the rehabilitation
platform (Pehlivan et al., 2016). Although the resistance training for
stroke patients has become a popular method to facilitate rehabilitation,
most rehabilitation robots’ resistance training offers constant resistance,
which lacks adaptability to the patients’ variable status.

Some studies considered the adaptation of resistance in robot-
assisted rehabilitation. Guozheng Xu used the biological damping and
stiffness parameters identified online to monitor the changes of muscle
strength of the subjects automatically and modified the required
resistance to be aligned with the changes in the muscle strength of
the subjects (Xu et al., 2017). OttC proposed a control framework for
passive flexible joint rehabilitation robot and designed the impedance
controller which was verified on the DLR lightweight robots and was
only suitable for the cases of constant impedance parameters (Albu-
Schaffer et al., 2007). Researchers from the Chinese University of Hong
Kong suggested an iterative learning impedance controller for
rehabilitation robots, providing a theoretical basis to ensure dynamic
stability in variable impedance control driven by compliance-driven
rehabilitation robots (Li et al., 2018). A nonlinear model relating to an
adaptive bilateral impedance controller was proposed by Mojtaba
Sharifi’s group, which was suitable for various collaborative tele-

rehabilitation of patient-rehabilitation physician interaction in a
multi-degree of freedom tele-robotics system (Sharifi et al., 2017).
Adaptive impedance control also played a role in exoskeleton
rehabilitation robots, using a nonlinear time-delay disturbance
observer (Brahmi et al., 2021). In the current rehabilitation robotics
studies, the existing human impedance parameter identification
methods can hardly identify the impedance parameters of human
upper limb in real time and apply them in rehabilitation training
dynamically and effectively.

In the process of rehabilitation training, more and more people
consider the importance of variable impedance for rehabilitation
training, and the interaction force between human-machine system
to make accurate evaluation of the patient’s state. However, the
present training model still cannot mobilize the participation of
patients. If the rehabilitation robot can identify the impedance
parameters of the upper limb end and modify the rehabilitation
strategy by adjusting the impedance parameters of the rehabilitation
robot adaptively according to the patient’s status, the rehabilitation
efficiency can be improved significantly, which is more conducive to
the rehabilitation of the affected limb.

In this study, aiming to increase the effectiveness of upper limb
rehabilitation robot, a robot rehabilitation platform was established
and an adaptive impedance control strategy was proposed, which
could adaptively change the impedance parameters according to the
subject’s participation. The paper is organized as follows: Section II
describes a mechanical platform of rehabilitation robot built for the
following study and the adaptive impedance control strategy.
Section III demonstrates the simulation verification and the
experiment results. Section IV conducts the discussion about the
results, and Section V draws the conclusion of the study.

2 Materials and methods

2.1 Rehabilitation robot system

2.1.1 Mechanical platform and control system
As shown in Figure 1, the flexible joint rehabilitation robot

platform was constructed. Based on the two-degree-of-freedom

FIGURE 1
The flexible upper limb rehabilitation robot.
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flexible joint upper limb rehabilitation robot, two connecting rods
were coupled in series using a flexible driver. Tube A and B were
made of carbon fiber tubes, which had the advantages of lightweight
and strong material. The end force sensor adopted the SRI’s six-axis
(force and moment) force sensor M3714A, which could
simultaneously measure the force and moment in the end of
Cartesian coordinate system. The robotic joint was one of
Seenpin’s XGA series. The joint integrated the motor, reducer,
elastomer, controller, and a variety of sensors. The joint was
characterized by high power density, high speed, and a high
torque output.

The external bus control was applied on the platform. The host
and the joint were connected by a network cable. The signal
transmission between the two joints and the host was achieved
by Ethernet communication. The control system supported
MATLAB one-stop development environment, which reduced the
time cost of debugging the underlying hardware and network
construction for the experiment. Key joint parameters were
shown in the following Table 1. The stiffness of the joint adopted
in the experiment was 170 Nm/rad.

2.1.2 Robot kinematics model
The training diagram of the two-degree-of-freedom flexible joint

upper limb rehabilitation robot could be simplified as Figure 2. The
upper limb rehabilitation robot was composed of two rods (rod A
and rod B), m1 = 1 kg, m2 = 0.7 kg, l1 � l2 � 0.4, lc1 � lc2� 0.2. lc1

and lc2 were the centroids of the two rods respectively. l1 and l2 were
the lengths of the two rods respectively. Assuming the two rods had
the same mass, the midpoints of rods A and B served as the mass
centers of the two rods respectively, and q1, q2 represented the joint
angles of rod A and rod B. With point O as the center, the forward
kinematics formula of the upper limb rehabilitation robot with two
degrees of freedom was established as follows.

xp � l1 cos q1 + l2 cos q1 + q2( ) (1)
yp � l1 sin q1 + l2 sin q1 + q2( ) (2)

xp and yp were the horizontal and vertical coordinates of the
Cartesian space of the robot end.

The inverse kinematics formula was derived from the forward
kinematics:

q1 � atan 2 −l2s2xe + l1 + l2c2( )ye, l1 + l2c2( )xe + l2s2ye( ) (3)

q2� ±acos
x2
p + y2

p + l21 − l22
2l1l2

( ) (4)

2.2 Adaptive impedance control strategy

The adaptive impedance control diagram based on human
impedance parameter identification was shown in Figure 3,
which mainly included impedance parameter estimation of the
affected limb, stiffness optimization, impedance controller,
trajectory planning, inverse kinematics, and robot controller, etc.
The robot first determined the rehabilitation task, chose the task
node, carried out trajectory planning for the rehabilitation robot
through quintic polynomial interpolation to get the expected end
trajectory Xd, and then calculated the joint expected trajectory
through inverse kinematics qd as the controller input. The
position of the joint controller was regulated by PD control.
Next, the impedance parameters Kh of the affected limb were
identified online using the FFRLS. The impedance parameters of
the upper limb end were also acquired. The optimal impedance Kr

was calculated by equations (14) and (15), and the terminal position
correction Δx was obtained by inputting Kr into the impedance
controller, correcting the expected trajectory Xd to the reference
trajectory Xr. The above process was the adaptive impedance control
procedure.

2.2.1 Identification of upper limb impedance
parameters

Some studies have considered mechanical impedance control as
an important method of human motion control. The complex
human arm model was simplified as a Cartesian impedance
model. The internal model of the arm was transferred to the end
of the human arm in the horizontal plane. Therefore, stiffness,
damping, and mass became the three components of the mechanical
impedance at the end of the human upper limb, relating to force,
position, speed, and acceleration respectively. In order to use this
model to assume human-computer interaction in the rehabilitation
system, it was necessary to estimate the impedance at the end of the
human arm. In this section, a model of human upper limb was
established and the impedance at the end of human upper limb was
estimated by FFRLS.

TABLE 1 XGA key joint parameters.

Configuration XGA

Maximum torque 19Nm

Maximum speed 28.5RPM

weight 550g

Transmission ratio 766.222:1

communication Ethernet

sensor Detect torque, acceleration, temperature and current

FIGURE 2
The training diagram of the two-degree-of-freedom flexible
joint upper limb rehabilitation robot.
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Since the musculoskeletal system was assumed to be a mass-
spring-damping system, the dynamic motion equation of the mass-
spring-damper system was used as a mathematical model to
measure the dynamic impedance of the upper limb. The
impedance model of the upper limb was depicted in Figure 4,
which could be used to measure the dynamic impedance of the
upper limb under during movement. When the upper limb was in
the stable state, the impedance model of the human upper limb end
in the Cartesian coordinate system could be displayed as follows:

M €X + B _X + KX � F (5)
M, B, K ∈ R3×3 respectively represented the inertial parameters,

damping parameters and stiffness parameters of the human upper
limb end, X ∈ R3 and F ∈ R3 respectively represented the position
and force of the upper limb end in the Cartesian coordinate system.
The position of the upper limb endwasmeasured by the joint encoder.
The joint position was calculated by the kinematic equation, and the
end force was measured by the six-dimensional force sensor.

In the process of rehabilitation training, the impedance
parameters of human upper limb were variable. With the
changes in the rehabilitation cycle, the impedance parameters of
human upper limb modified slowly. For the slow time-varying
system, the recursive least square (RLS) method had its
limitations. As k increased, the values of P(k) and K(k) decreased,
resulting in declining corrections for θk

∧
,, the smaller and smaller

correction effect of θk
∧

from new input and output data pairs.
Additionally, the accuracy of parameter estimation error

decreased and the RLS method was unable to track the changes
in system parameters online constantly. To overcome this
shortcoming, FFRLS was carried out (Long et al., 2023).

Take the cost function:

J � ∑L
k�1

λL−K y k( ) − φT k( )θ̂[ ]2 (6)

λ was the forgetting factor (0< λ≤ 1), which meant that the input
and output data were added with a time-varying weight coefficient.
The weight of the latest input and output data of the k group was 1,
and the weight coefficient of all the previous n groups was λn. The
smaller the weight coefficient of the original data was, the greater the
degree of forgetting was. The values of P(k) and K(k) would not lose
their ability to correct θk

∧
with the increase of k, that is, the influence

on the system parameter identification would not decrease.
The RLS derivation formula of forgetting factor was as follows:

θ̂ k( ) � θ̂ k−1( ) +K k( ) y k( ) − φT k( )θ̂ k−1( )[ ]
K k( ) � P k−1( )φ k( )

λ + φT k( )P k−1( )φ k( )
P k( ) � 1

λ
I − K k( )φT k( )[ ]P k−1( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(7)

The method of selecting initial values P(0), θ̂(0)was the same as
RLS. The value of forgetting factor λ was generally a positive real
number which was close to 1, usually greater than 0.9. In the linear
system, the forgetting factor was generally 0.95≤ λ≤ 1. When λ� 1,
the FFRLS degraded into the ordinary RLS.

2.2.2 Optimal stiffness selection
At different stages of their rehabilitation, patients need different

training modalities, requiring a specific stiffness from the
rehabilitation robot (Zou et al., 2022). In order to increase the
effectiveness of rehabilitation therapy assisted by rehabilitation
robot, patients’ active participation must be encouraged by the
robot controller (Luo et al., 2017; Guo et al., 2022a). At the same
time, if the patient’s movement deviated from the expected
movement, it should be restrained. Therefore, the reward
function was set to balance patients’ participation and trajectory
shift error. The reward function was defined as:

FIGURE 3
The adaptive impedance control diagram based on human impedance parameter identification.

FIGURE 4
The impedance model of the human upper limb.
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r � a1FhV − a2 e‖ ‖2
� a1FxVx − a22e

2
x( ) + a1FyVy − a22e

2
y( ) (8)

FhVwas the output power of the patient, which was used to measure
the effort of the patient; ex and ey were the trajectory error at the end
of Cartesian space; a1 and a2 were the parameters which struck a
balance between the patient’s effort and the trajectory deviation.
When the reward value was higher, the higher the patient’s
participation in rehabilitation training was higher and the
deviation of the expected trajectory was less.

Fx � Khx xd − x( ) − BhxVx

Fy � Khy yd − y( ) − BhyVy
(9)

Eq. 9 was substituted into Eq. 8,

r � KhxexVx − a1BhxV
2
x − a22e

2
x( ) + KhyeyVy − a1BhyV

2
y − a22e

2
y( )
(10)

The reward function r took the partial derivative with respect to
ex and ey respectively.

δr

δex
� a1KhxVx−2a22ex

δr

δey
� a1KhyVy−2a22ey

(11)

In order to maximize the reward function, δr
δex

� 0, δr
δey

� 0,

êx � a1KhxVx

2a22

êy � a1KhyVy

2a22

(12)

During rehabilitation training, the inertia, motion acceleration,
and speed of the rehabilitation robot were very small. The inertia
force and Coriolis force could be safely disregarded. In addition,
compared with the joint torque of the rehabilitation robot, friction
was also found to be negligible. Assuming that the affected limb end
achieved a stable state within a short time, the force of the
rehabilitation robot was equal to that exerted by the patient:

Frx + Fx� 0
Fry + Fy� 0

(13)
Krx + Khx( )ex − Brx + Bhx( )Vx� 0
Kry +Khy( )ey − Bry + Bhy( )Vy� 0 (14)

Eq. 12 was substituted into Eq. 14 to obtain the optimal stiffness
of impedance control of rehabilitation robot:

K̂rx � 2a22 Brx + Bhx( )
a1Khx

−Khx

K̂ry � 2a22 Bry + Bhy( )
a1Khy

− Khy

(15)

K
∧
rx and K

∧
ry were the optimal stiffness of the impedance control of

the rehabilitation robot, which maximized the reward function
during rehabilitation training of the affected limb. As
demonstrated by Eq. 15, the optimal stiffness of the robot’s
impedance control was inversely proportional to the stiffness of
the affected limb, which was conducive to providing corresponding
feedback and parameter changes according to the different needs

and actual state of patients during rehabilitation training. When the
capacity of the affected limb decreased, the assisting force of the
rehabilitation robot increased. The larger the value of the parameter
a1 was, the smaller the optimal stiffness value of the rehabilitation
robot was. In other words, more attention should be paid to the
effort of the affected limb during rehabilitation training to satisfy the
definition of the reward function. The size of the stiffness parameter
was definitely associated with the level of assistance of the
rehabilitation robot (Honghai et al., 2022).

When the affected limb had minimal participation
(Khx≈ 0,Khy≈ 0), the stiffness of the rehabilitation robot tended
to be infinity. The following limits were set for the stiffness of the
impedance control to avoid this situation. Kmin and Kmax were the
minimum and maximum stiffness that the rehabilitation robot
controller could provide.

Kr � max K min, min K max, K̂r{ }{ } (16)

3 Experiment results

In order to verify the impedance identification algorithm and the
adaptive impedance control technology proposed in this study, three
sets of experiments were carried out in this section: impedance
parameter identification verification and variable impedance control
simulation experiment, as well as the adaptive impedance control
verification.

3.1 Impedance parameter identification
verification

As shown in Figure 5, the platform for impedance identification
experiment was set up. The end handle of the rehabilitation robot
was connected to the elastic body (rubber band). The other end of
the elastic body was fixed, and the elastic body was fixed stiffness
within a certain range. The six-dimensional force sensor with the
end connected to the grip could measure the force and the torque in

FIGURE 5
The impedance identification experiment platform.
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three directions in Cartesian space. The Cartesian coordinate system
was installed at the rotation center of the first joint. Since the
experiment platform belonged to the tabletop upper limb
rehabilitation robot, only coordinate systems in the x and y
directions were established.

Since the peak moment of the joint was 19 Nm, a spring with
excessive stiffness could not be used for the impedance parameter
identification experiment. Therefore, a rubber band chosen for the
experiment had an elastic stiffness of 25 N/m. The end stiffness
parameters were varied by changing the number of strands, stiffness,
and position of the rubber bands. Firstly, two strands of rubber
bands were selected for the impedance parameter identification
experiment. The initial point of the end was (0.4 m, 0), and the
movement was planned to (0.3 m, 0). The trajectory planning
adopted the quintic polynomial interpolation method. Under the
initial condition of the experiment, the elastic band was just taut, and
the force sensor could detect the tension of the elastomer at the end,
which was in the same plane as the elastomer at the other fixed end.
It was planned to move from point A (0.4 m, 0) to point B (0.3 m, 0).
The trajectory planning results in the x direction were shown in the
following figure using quintic polynomials. The position, speed, and
acceleration of the end from top to bottom were illustrated in
Figure 6A. It could be observed that the speed and acceleration
in the initial and terminal states were 0. This method could
successfully avoid the impact of the rehabilitation robot on the
motor during the process of starting and stopping. Meanwhile, the
smooth trajectory also made the rehabilitation process more steady,
which was beneficial to the rehabilitation of the affected limb. The
expected trajectories of the two joints were obtained by inverse
kinematics, as shown in Figure 6B, qd1 and qd2 were input to the
joint servo controller of the robot as the position control of the two
joints controller.

The interaction force F between the end of the elastomer and the
rehabilitation robot was detected by the force sensor. The real-time
joint angle q was obtained by the encoder of the rehabilitation robot.
The real-time angles of two joints q acquired terminal position
through the forward kinematics. The terminal speed was obtained
by the differential. Inputting the terminal position, terminal speed,
and terminal interaction force, the terminal impedance parameters

are estimated by the least square method (LS), RLS, and FFRLS. The
input parameters of the impedance identification experiment were
displayed in Figure 7A. The terminal impedance parameters
estimated by LS, RLS, and FFRLS were shown in Figure 7B The
blue, red, and yellow lines represented the estimated end stiffness of
the LS, RLS, and FFRLS, respectively, while the purple line
represented the actual stiffness value. It illustrated that RLS and
LS began to converge after 3s, much slower than FFRLS.

Impedance parameter identification errors were shown in
Table 2. Since the stiffness estimation of the first few seconds by
RLS and LS was divergent, it did not have statistical significance. All
data in Table 2 were calculated after the stiffness identification
curves of FFRLS, RLS, and LS. The root-mean-square errors of
stiffness identification by FFRLS (λ = 0.95), RLS, and LS were
1.5900 N/m, 1.6075 N/m and 2.0703 N/m, respectively. The
maximum stiffness identification errors were 1.5900 N/m,
1.6859 N/m, and 2.6888 N/m, respectively. The results showed
that the root-mean-square error and maximum error of the
FFRLS (λ = 0.95) stiffness estimation were smaller than those of
RLS and LS. Therefore, the stiffness estimation from FFRLS had the
best result.

3.2 Variable impedance control simulation
verification

The feasibility of the above impedance control was verified by
simulation in Matlab 2023a. To verify the system’s ability of control
stiffness under the external disturbances, we simulated the stiffness
of the upper limb end of the healthy participants by modifying
impedance parameters, thereby altering the system’s stiffness
behavior. This demonstrated its control capability over
impedance characteristics. The simulation platform was set up
based on actual platform parameters. The parameters of
kinematic model were set as follows: m1 = 1 kg, m2 = 0.7 kg, I1 =
0.25, I2 = 0.1, ll = l2 = 0.4, lc1 = lc2 = 0.2;m1 andm2 were the masses of
rods A and B respectively. ll and l2 were the lengths of rods A and B
respectively. lc1 and lc2 were the distances from the center of mass of
rods A and B to the rotation center, respectively. I1 and I2 were the

FIGURE 6
(A) X-direction trajectory planning in Cartesian space. (B) Joint 1 and joint 2 expected trajectory.
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moments of inertia of rods A and B, respectively. Parameter g
represented the gravitational acceleration and was taken as 9.8 m/s.
The control stiffness parameter was established as follows:

Kd t( ) � diag 10 + 10 sin 2t( ), 10 + 10 cos 2t( ){ } (17)
The end load of Cartesian coordinate system was established as

follows:

fe1� 2 sin 2t( ), fe2� 2 cos 2t( ) (18)
That is, the stiffness changed at a fixed frequency within a certain

range, which was reflected in the varying stiffness of the
manipulator’s end in different directions on the plane. As shown
in Figure 8, the solid and dashed lines were the curves of the stiffness
of the two different joints of the robot over time.

Under the above external conditions, the corresponding load
force was applied to it. And it was expected that the resulting torque
output and error performance could reflect the stiffness control
performance. Figures 9A,B were the position tracking error and the
derivative change curve caused by the impedance control of the two
joints of the robot, respectively. As observed in Figure 9A, in the face
of the load imposed by the external environment, the tracking error
e1 of the reference position converged in a small neighborhood
where the equilibrium point was 0 and the steady-state error did not
exceed 0.06. This result indicated the effectiveness of the adaptive
impedance control strategy when the platform faced the variable
impedance. As shown in Figure 9B, the first derivative of the
reference position tracking error _e1 gradually converged to 0,
which indicated that the position error of the platform gradually
stabilized under the variable load force.

Figure 10 was the graph of the output torque of the two joints
changing over time, and it displayed that the joint itself output the

corresponding output torque to counteract the external input
torque.

3.3 Adaptive impedance control verification

To verify the adaptive impedance control system in this study, a
healthy male participant (24 years old, 1.88 m in height, 84 kg in
weight) was recruited in the experiments, as shown in Figure 1, The
study was reviewed by Shanghai University of Medicine and Health
Sciences ethics, batch number 2022-ZYXM4-04-
420300197109053525. The experiment was designed as follows:
the rehabilitation task required the subject to move the end of
the upper limb from A (0.5 m, 0) to C (0.2 m, 0), and each training
time was 10s. Under the condition of constant impedance control
and adaptive impedance control, the experiments were carried out
with varying participation of the affected limb (i.e., different
impedance parameters). The trajectory planning results of x
direction using quintic polynomials were reported in Figure 11A,
including the position, speed, and acceleration of the end from top to
bottom. At the starting point A and the end point C, there was no

FIGURE 7
(A) The input parameters of impedance identification experiment (B) Impedance parameter identification results.

TABLE 2 Impedance parameter identification errors.

Identification stiffness RMS(N/m) MAX (N/m)

FFRLS (λ = 0.95) 1.5900 1.5900

RLS 1.6075 1.6859

LS 2.0703 2.6888

FIGURE 8
The stiffness of two different joints of the robot.
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speed or acceleration. This approach effectively reduced the impact
of the rehabilitation robot on the motor during the phases of starting
and stopping. Furthermore, the well-executed trajectory enhanced
the overall stability of the rehabilitation process, thereby promoting
the recovery of the affected limb. The expected trajectories of both
joints were determined by inverse kinematics, as illustrated in
Figure 11B. qd1 and qd2 were input to the joint servo controller
of the rehabilitation robot as the position control of the two joints
controller.

The parameters a1� 10,a2� 2 were set to make the weight of the
work performed by the human upper limb higher in the
rehabilitation strategy. The upper limit of the optimal stiffness
was Kmax = 400 N/m, while the lower limit was Kmin = 10 N/m.
The impedance limit could protect the affected limb and improve
the safety of the rehabilitation training better. The experiment
results under different participation conditions were illustrated in
Figure 12, including the end-trajectory, human-computer
interaction force, the identified end-damping, end-stiffness of the
upper limb, and the robot’s optimal stiffness. Figures 12A,B was the
result of the subject’s high and low participation. When there is a
high level of the subject’s participation in upper limb rehabilitation

training, the stiffness at the upper limb’s end is high, and the optimal
robot stiffness is low, indicating a lower degree of robot assistance.
As a result, a larger degree of robot assistance was indicated when
there was a low participation level in upper limb rehabilitation
training, low stiffness at the upper limb’s end, and high optimal
robot stiffness.

The terminal trajectories and interaction forces for both the
constant impedance control (Kd = 100 N/m) and the adaptive
impedance control were shown in Figure 13A. In both
experiments, the interactive forces of adaptive impedance and
constant impedance consistently showed high participation levels
for the affected limb. Demonstrating that The reward obtained from
the adaptive impedance control during the rehabilitation training
was significantly higher than that of the constant impedance control
with Kd = 100 N/m, as illustrated by the reward functionsin
Figure 13B. This confirmed the effectiveness and robustness of
the adaptive impedance control strategy proposed in this study.

The analysis of the reward function was shown in Table 3. The
average rewards of constant impedance control (Kd = 100 N/m) and
adaptive impedance control were 0.0152 and 0.8514, and the
maximum rewards were 0.0471 and 13.3437, respectively.

4 Discussion

In this study, we constructed a mechanical platform and
developed a novel adaptive impedance control strategy for the
upper limb rehabilitation robot. We utilized a mass-spring-
damping system to simulate the musculoskeletal system. With
the changes in rehabilitation cycle, we used FFRLS to improve
the accuracy of parameter estimation error. This method, in
contrast to earlier LS or RLS, could constantly track changes in
the impedance parameters online and did not decrease system
parameter identification due to increased stiffness. We employed
the reward function to strike a balance between the subject’s
participation and the trajectory deviation error, further achieving
the optimal stiffness of impedance control of the rehabilitation
robot.

Various techniques were employed in some studies to estimate
and adjust participants’ optimal stiffness. An algorithm that could

FIGURE 9
(A) The position tracking error caused by the impedance control (B) The derivative change curve caused by the impedance control.

FIGURE 10
The output torque of the two joints.
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adaptively change the impedance control’s stiffness parameters in
response to the observed values of the interaction force between
patients and robots was proposed by Riener et al. Through the linear
adaptive law, when the workload of the patient was detected to
increase, the stiffness value was reduced (Riener et al., 2005).
Ground on the evaluation of human active torque, Shahid et al.
employed a similar method to control the stiffness of the
manipulator (Hussain et al., 2013). Although their methods
achieved control results, this study fully considered the levels of
the subject’s participation and enthusiasm in rehabilitation training
in the form of a reward function. Patients’ active participation
awareness played a significant role in promoting the effect of
rehabilitation training (Pawlak et al., 2022).

Moreover, this study designed the experiments under different
participation to get the different parameters from the robot. When
patients showed the signs of fatigue or reduced movement ability, the
robot could increase the assistance level tomaintain training continuity
and efficacy, avoiding potential secondary injuries or training
outcomes (Yang et al., 2023). Conversely, when patients exhibited a
high level of participation, the robot might reduce its assistance to
encourage patients to make more use of their own muscle, which
supported neural plasticity and the rehabilitation of motor functions
(Kawahira et al., 2010). Further studies via this approach enables more
personalized rehabilitation training, satisfying the specific needs of
different patients, thereby improving the efficiency of rehabilitation
and accelerating the patient’s return to normal life and work.

FIGURE 11
(A) X-direction trajectory planning (B) Expected trajectory of joint 1 and joint 2.

FIGURE 12
The results of experiments under different conditions of the participation. (A)High participation experiment results (B) Low participation experiment
results.
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In the simulation experiment, it was observed that the
corresponding torque output at the end of the robotic arm could
resist the corresponding load force when the platform was facing
variable external load force and the error was controlled within a
narrow range, proving the effectiveness of the adaptive impedance
control strategy. The limit of the simulation was that the stiffness
change law was set by ourselves to simulate the actual situation.
However, the output stiffness value of the assist-as-needed strategy
was optimized according to the stiffness of the affected limb. We will
optimize the experimental settings by taking assist-as-needed
rehabilitation procedures into account in subsequent studies.

Since impedance control achieved regulation and
stabilization of robot motion by establishing a mathematical
relationship between the interaction forces and the reference
trajectories (Al-Shuka et al., 2018), we compared adaptive
impedance control and constant impedance control for
experimental verification. By setting different parameters to
simulate varying levels of participant engagement, the results
obtained were consistent with the experiment in which a healthy
subject was involved. We also obtained that the average and
maximum rewards of adaptive impedance control were higher
than those of constant impedance control at Kd = 100 N/m. Luo,
Duan, and Berenice conducted comparative simulation
experiments on constant impedance control and variable
impedance control (Luo et al., 2017; Maldonado et al., 2015;
Duan et al., 2018). In these researches, Luo used different levels of
simulated stiffness values, Duan compared the two methods in
different environments, and Berenice simulated the situations of
subjects under different task modes. Their research findings
indicated that adaptive impedance control had better force

tracking performance and potential for facilitating rewards
compared to constant impedance control. Adaptive impedance
control technology can be utilized in robot-assisted rehabilitation
systems under various conditions which further prove the
effectiveness of adaptive impedance control in rehabilitation
training. Ibarra and Wang also suggested adaptive impedance
control strategies, considering the influence of patients on the
ankle rehabilitation robot and adjusting the robot aids in real
time (Perez-Ibarra et al., 2015; Wang et al., 2019). The
intervention of the exoskeleton was considered in the process
of training (Guo et al., 2022b).

This control strategy offered significant potential for achieving
the best active training effect and creating a controllable impedance
environment for the patient. The adaptive control strategy can
improve the performance of the human-robot interaction and the
effectiveness of the control system for upper limb rehabilitation
robot. In addition, the proposed strategy could also be applied to the
different rehabilitation robots. In our follow-up studies, we will test
the proposed method with more healthy subjects and patients to
accurately identify the differences based on the different
participation, and we will also apply this control system for the
wearing assistive devices to test its effectiveness, improving the
rehabilitation efficacy eventually.

5 Conclusion

In this study, an novel adaptive impedance strategy for upper-
limb rehabilitation robots was proposed. The efficacy of optimal
stiffness control was confirmed through a comparison of

FIGURE 13
(A) The terminal trajectory and interaction force (B) Reward function.

TABLE 3 The analysis of reward function.

Control strategy The average reward The maximum reward

Constant impedance control (Kd = 100 N/m) 0.0152 0.0471

Adaptive impedance control 0.8514 13.3437
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performance across various levels of upper limb participation during
the rehabilitation process. A comparison of rehabilitation
performance between adaptive impedance control and consant
impedance control was also conducted. The simulation and the
experiments fully verified the effectiveness of this adaptive
impedance control strategy.
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