61 research outputs found
Recommended from our members
Frictional characteristics of steel plates during abrasive particle flow: A comparison of in situ measurements made on a linear abrasive wear tester with those on a Jenike shear tester Jenike shear tester
Friction measurements were made on two testers: the Jenike shear tester and a linear abrasion wear tester (LAWT). Wall friction values were obtained for a range of steels and surface finishes, typical of the plates used for the manufacture of hoppers and silos in bulk solids handling applications. The abrasive used was crushed soda-lime glass. It was found that friction values on the Jenike were similar to the initial āstart upā values obtained on the LAWT. The latter correlated particularly well with the surface roughness of the sample plates. On the LAWT, friction was found to increase with sliding distance until a steady-state level was attained. It is considered that this increase is due to the gradual accumulation of wear debris, particularly fragmented abrasive particles, on the surface of the wear specimen
Recommended from our members
Virtual geometric realization of woven textile composites
Several methods for describing meso-mechanical virtual domains of woven textiles exist. Such approaches utilize equations conjured directly from independent textile manufacturing/machining processes. Therefore, extensions beyond cases considered by the originating authors is technically challenging because it requires machining process experience. Consequently, an intuitive, yet simple, method for developing a variety of complex woven textiles is desirable. The proposed approach uses a simplistic geometric philosophy similar to Peirce's. Nevertheless, it implements advancedcross-sectional shape functions such as power-elliptical functions etc., capable of describing a plethora of cross-sections. Also, non-circular arcs, adapted from local cross-sectional geometry of yarns, are used to define yarn paths. In addition, more complex woven fabrics such as 3D angle and orthogonal interlocking textiles are considered. Generation of desired woven fabrics is defined by a set of inherent physical geometric arguments which are implemented using numerical techniques. This numerical solution strategy, based on physical arguments, negates the requirement of defining equations restricted to specific textiles, making the proposed technique universally adaptable. The requisite arguments of this approach are implemented in MATLAB using an in-house algorithm, TextCompGen. It receives arguments about desired textile architectures, and outputs MATLAB-based plots of the expected geometry alongside a complementary Python-script for automatically re-creating the same geometry in ABAQUS/CAEāa widely-used finite element (FE) preprocessor. The latter feature is included to facilitate subsequent FE analyses, if required
Relationship between islet autoantibody status and the clinical characteristics of children and adults with incident type 1 diabetes in a UK cohort.
OBJECTIVES: To describe the characteristics of children and adults with incident type 1 diabetes in contemporary, multiethnic UK, focusing on differences between the islet autoantibody negative and positive. DESIGN: Observational cohort study. SETTING: 146 mainly secondary care centres across England and Wales. PARTICIPANTS: 3312 people aged ā„5 years were recruited within 6 months of a clinical diagnosis of type 1 diabetes via the National Institute for Health Research Clinical Research Network. 3021 were of white European ethnicity and 291 (9%) were non-white. There was a small male predominance (57%). Young people <17 years comprised 59%. MAIN OUTCOME MEASURES: Autoantibody status and characteristics at presentation. RESULTS: The majority presented with classical osmotic symptoms, weight loss and fatigue. Ketoacidosis was common (42%), especially in adults, and irrespective of ethnicity. 35% were overweight or obese. Of the 1778 participants who donated a blood sample, 85% were positive for one or more autoantibodies against glutamate decarboxylase, islet antigen-2 and zinc transporter 8. Presenting symptoms were similar in the autoantibody-positive and autoantibody-negative participants, as was the frequency of ketoacidosis (43%vs40%, P=0.3). Autoantibody positivity was less common with increasing age (P=0.0001), in males compared with females (82%vs90%, P<0.0001) and in people of non-white compared with white ethnicity (73%vs86%, P<0.0001). Body mass index was higher in autoantibody-negative adults than autoantibody-positive adults (median, IQR 25.5, 23.1-29.2vs23.9, 21.4-26.7ākg/m2; P=0.0001). Autoantibody-negative participants were more likely to have a parent with diabetes (28%vs16%, P<0.0001) and less likely to have another autoimmune disease (4%vs8%, P=0.01). CONCLUSIONS: Most people assigned a diagnosis of type 1 diabetes presented with classical clinical features and islet autoantibodies. Although indistinguishable at an individual level, autoantibody-negative participants as a group demonstrated features more typically associated with other diabetes subtypes. TRIAL REGISTRATION NUMBER: ISRCTN66496918; Pre-results
Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes
This is an author-created, uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association (ADA), publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version is available in Diabetes in print and online at http://diabetes.diabetesjournals.orgThe erratum to this article is available in ORE at http://hdl.handle.net/10871/40335Studies in type 1 diabetes indicate potential disease heterogeneity, notably in the rate of Ī²-cell loss, responsiveness to immunotherapies, and, in limited studies, islet pathology. We sought evidence for different immunological phenotypes using two approaches. First, we defined blood autoimmune response phenotypes by combinatorial, multiparameter analysis of autoantibodies and autoreactive T-cell responses in 33 children/adolescents with newly diagnosed diabetes. Multidimensional cluster analysis showed two equal-sized patient agglomerations characterized by proinflammatory (interferon-Ī³-positive, multiautoantibody-positive) and partially regulated (interleukin-10-positive, pauci-autoantibody-positive) responses. Multiautoantibody-positive nondiabetic siblings at high risk of disease progression showed similar clustering. Additionally, pancreas samples obtained post mortem from a separate cohort of 21 children/adolescents with recently diagnosed type 1 diabetes were examined immunohistologically. This revealed two distinct types of insulitic lesions distinguishable by the degree of cellular infiltrate and presence of B cells that we termed "hyper-immune CD20Hi" and "pauci-immune CD20Lo." Of note, subjects had only one infiltration phenotype and were partitioned by this into two equal-sized groups that differed significantly by age at diagnosis, with hyper-immune CD20Hi subjects being 5 years younger. These data indicate potentially related islet and blood autoimmune response phenotypes that coincide with and precede disease. We conclude that different immunopathological processes (endotypes) may underlie type 1 diabetes, carrying important implications for treatment and prevention strategies.JDRFNational Institute for Health Research (NIHR) Biomedical Research Centre based at Guyās and St Thomasā NHS Foundation Trust and Kingās College LondonEuropean Union (EU FP7) award - Persistent Virus Infection in Diabetes Network Study Group (PEVNET)EU FP7 Large-Scale Focused Collaborative Research Project on Natural Immunomodulators as Novel Immunotherapies for Type 1 Diabetes (NAIMIT)EU FP7 Large-Scale Focused Collaborative Research Project on Ī²-cell preservation through antigen-specific immunotherapy in Type 1 Diabetes: Enhanced Epidermal Antigen Delivery Systems (EE-ASI)National Institutes of Health (NIH)National Institute of Diabetes and Digestive and Kidney DiseasesNational Institute of Allergy and Infectious DiseasesEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Center for Research ResourcesGeneral Clinical Research CenterAmerican Diabetes Association (ADA
Assessment and Management of Anti-insulin Autoantibodies in Varying Presentations of Insulin Autoimmune Syndrome
Context: Insulin autoimmune syndrome (IAS), spontaneous hyperinsulinemic hypoglycemia due to insulin-binding autoantibodies, may be difficult to distinguish from tumoral or other forms of hyperinsulinemic hypoglycemia including surreptitious insulin administration. No standardized treatment regimen exists. Objectives: To evaluate an analytic approach to IAS and responses to different treatments. Design and Setting: Observational study in the UK Severe Insulin Resistance Service. Patients: 6 patients with hyperinsulinemic hypoglycemia and detectable circulating anti-insulin antibody (IA). Main outcome measures: Glycemia, plasma insulin and C-peptide concentrations by immunoassay or mass spectrometry (MS). Immunoreactive insulin was determined in the context of polyethylene glycol (PEG) precipitation and gel filtration chromatography (GFC). IA quantification using enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay (RIA), and IA were further characterized using radioligand binding studies. Results: All patients were diagnosed with IAS (5 IgG, 1 IgA) based on high insulin:C-peptide ratio, low insulin recovery after PEG precipitation, and GFC evidence of antibody-bound insulin. Neither ELISA nor RIA result proved diagnostic for every case. MS provided a more robust quantification of insulin in the context of IA. 1 patient was managed conservatively, 4 were treated with diazoxide without sustained benefit, and 4 were treated with immunosuppression with highly variable responses. IA affinity did not appear to influence presentation or prognosis. Conclusions: IAS should be considered in patients with hyperinsulinemic hypoglycemia and a high insulin:C-peptide ratio. Low insulin recovery on PEG precipitation supports the presence of insulin-binding antibodies, with GFC providing definitive confirmation. Immunomodulatory therapy should be customized according to individual needs and clinical response
Adiponectin levels in people with Latent Autoimmune Diabetes-a case control study
<p>Abstract</p> <p>Background</p> <p>To examine adiponectin levels in people with Latent Autoimmune Diabetes in Adults using a matched pair case control study.</p> <p>Findings</p> <p>Patients with LADA (n = 64), were matched for sex with type 2 diabetic and non-diabetic controls. A matched paired T-test was used to examine average adiponectin levels in the LADA patients' versus controls. The average adiponectin level for the LADA patients was 9.96 Ī¼g/ml compared to 6.4 Ī¼g/ml for Type 2 matched controls and 9.6 Ī¼g/ml for non-diabetic controls. Mean difference for the LADA-type 2 comparison was calculated after data was log transformed and showed a difference of 1.58 Ī¼g/ml (95%CI: 1.28-1.95, p = 0.0001). There was no significant difference between LADA and non-diabetic controls (p = 0.54).</p> <p>Conclusions</p> <p>Adiponectin levels are higher among people with LADA compared to those with type 2 diabetes and are equivalent to levels seen in non-diabetic controls. This suggests that risk of complications in LADA, as with type 1 diabetes may be related more to glycaemic control rather than to factors of the metabolic syndrome.</p
Recommended from our members
Understanding particle dynamics in erosion testers: a review of influences of particle movement on erosion test conditions
An understanding of particle dynamics is important when determining material erosive wear in any erosion tester, because particle impact conditions are primarily influenced by particle acceleration. Abetter understanding of particle dynamics in the testers will aid the control of erosion test conditions and therefore improve the accuracy of measurement. In this paper, particle dynamics in the two most popular erosion testers, the centrifugal erosion tester and the gas-blast erosion tester, has been discussed in detail. Mechanisms of particle acceleration in the two types of testerswere explored and computational models
of particle dynamics were described briefly. A review of the experimental determination of important characteristics of particle dynamics (such as particle velocity, particle trajectory, particle dispersion and particle rotation) showed how they influenced particle movement and therefore the particle impact conditions. In addition, comparison of the particle dynamics in the two types of erosion testers showed that differences of particle acceleration may lead to significantly different results at identical pre-set test conditions. It may be concluded that it is not possible to directly compare the results obtained in different types of erosion testers even under notionally identical test conditions
Recommended from our members
The influence of particle rotation on the solid particle erosion rate of metals
It has long been recognised that particle spin may have a significant effect on the impact erosion rate, particularly of ductile metals. However, no work has previously been carried out to quantify this effect, partly due to the practical difficulty of measuring the magnitude of the rotational speed. Particle spin is a feature of the centrifugal accelerator erosion tester. In this tester it has proved possible to examine the effect on erosion of particle spin direction by varying the target orientation. The results indicated a strong effect of the spin direction on erosion rate at low impact angles when the targets were impacted by angular particles. A quantitative model was developed to explain the effect of particle spin direction on the observed differences. The model is a modification of the FinnieāBitter model [Wear 3 (1960) 87; Wear 6 (1963) 5; Wear 6 (1963) 160], and is the first to explicitly incorporate the effect of rotating particles on the subsequent erosion rate when the particles impact a metal target. The model supposes that the effective impact velocity, the contact velocity between the particle and the target, is altered due to spin of the particles. The predictions of the model were validated through actual measurement.
of particle rotational speed by high-speed photographic techniques; the first such measurements. Experimental erosion results conformed
to the predictions of the model. An effect of particle spin on the peak erosion rate is also predicted by the model and confirmed by the
experimental results
- ā¦