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Abstract 

Studies in type 1 diabetes indicate potential disease heterogeneity, notably in the rate of β-cell loss, 

responsiveness to immunotherapies and, in limited studies, islet pathology. We sought evidence for 

different immunological phenotypes using two approaches. First, we defined blood autoimmune 

response phenotypes by combinatorial, multi-parameter analysis of autoantibodies and autoreactive 

T-cell responses in 33 children/adolescents with newly-diagnosed disease. Multi-dimensional cluster 

analysis showed two equal-sized patient agglomerations, characterized by pro-inflammatory (IFN-

γ+, multi-autoantibody-positive) and partially-regulated (IL-10+, pauci-autoantibody-positive) 

responses. Multi-autoantibody-positive non-diabetic siblings at high-risk of disease progression 

showed similar clustering. Second, pancreas samples obtained post mortem from a separate cohort of 

21 children/adolescents with recently-diagnosed type 1 diabetes were examined 

immunohistologically. This revealed two distinct types of  insulitic lesion, distinguishable by degree 

of cellular infiltrate and presence of B-lymphocytes, that we term “hyper-immune CD20Hi” and 

“pauci-immune CD20Lo”. Notably, subjects had only one infiltration phenotype and were 

partitioned by this into two equal-size groups that differed significantly by age of diabetes-onset, 

hyper-immune CD20Hi subjects being 5 years younger. These data indicate potentially related islet 

and blood autoimmune response phenotypes that coincide with, and precede disease. We conclude 

that different immunopathological processes (endotypes) may underlie type 1 diabetes, carrying 

important implications for treatment/prevention strategies. 
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Type 1 diabetes is a chronic inflammatory disease resulting from selective immune-mediated 

destruction of insulin-producing β-cells in the islets of Langerhans (1). Numerous features of the 

syndrome are constant, including absolute requirement for exogenous insulin administration, and in 

the narrower definition of type 1A diabetes, evidence of ongoing autoimmunity directed against the 

islets (2). The latter is usually manifest via circulating islet antigen-specific autoantibodies (islet 

AAbs), but there is also now considerable evidence that circulating autoreactive CD4 and CD8 T 

cells are detectable (3-7). These insights have been critical in the translational course towards the 

development and implementation of immune-based therapies, aiming to subvert or incapacitate 

immune pathways that lead to β-cell death.  

In most intervention studies to date, the major inclusion criterion is positivity for a single islet AAb, 

of any specificity. In light of recent suggestions that type 1 diabetes is heterogeneous in nature, this 

aspect of clinical trial design is worth closer inspection. There is evidence, for example, that patients 

vary in their presenting level of functional β-cell reserve and its rate of loss (8), as well as the 

number and type of AAbs (9). There is also an emerging impression that islet pathology, in terms of 

extent of β-cell damage and immune cell infiltration, may have a broad range of presentations, 

although data in this regard are currently very limited (10).  If these observations of clinico-

pathological heterogeneity reflect diverse immunological pathways to disease, then this could have 

important implications for the selection and testing of agents designed to halt ongoing immune-

mediated damage. 

 We previously described circulating CD4 T cells specific for islet autoantigens and secreting 

inflammatory cytokines (IFN-γ, IL-17) as a characteristic of type 1 diabetes (4; 6). Those studies 

provided proof-of-concept that autoreactive T cells are present at disease diagnosis, but there have 

been limited attempts to date to link this finding to the presence of islet AAbs and gain a more 

holistic view of the adaptive immune response. Since patients with type 1 diabetes may have absent, 

single or multiple islet specific autoantibodies at diagnosis, this broader view of the autoimmune 

response may offer insights into the nature of this heterogeneity. 
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From these considerations, we identified two important, and potentially linked knowledge gaps. The 

first is whether there are distinct patterns of the adaptive autoimmune response detectable in the 

blood that can be revealed in combinatorial approaches; and the second is whether there is evidence 

of heterogeneity of islet pathology. To address these, we combined measurements of autoimmunity 

(functional phenotype of autoreactive CD4 T cells and islet AAbs) with multi-dimensional data 

analysis to explore whether distinct autoimmune response phenotypes are present in children with 

type 1 diabetes and how they relate to disease risk in siblings. In addition, we profiled the islet 

immune cell infiltration in a cohort of children who died close to type 1 diabetes onset. Our data 

provide evidence for distinct immunopathological processes in type 1 diabetes development, which 

may have important implications for intervention and prevention strategies. 
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Materials and Methods 

Autoantibody assays 

Autoantibodies to insulin (IAA), glutamic acid decarboxylase (GAD65Ab), islet antigen (IA-2Ab), 

and zinc transporter 8 (ZnT8Ab) were measured by radioimmunoassay as previously described (11; 

12). IAA, and ZnT8Ab levels were expressed in arbitrary units and GADAb and IA-2Ab in DK 

units/mL (12).  

Studies on peripheral blood  

Fresh heparinized blood samples were obtained from 33 children with type 1 diabetes (median age 

11 years, range 5-16 years; duration of type 1 diabetes ≤ 12 weeks: median 8 weeks; 60% males). 

Positivity for AAbs was as follows: GADAb, 54%, IA-2Ab, 73%; and ZnT8Ab, 65%. Insulin 

autoantibody measurements were not conducted on patients with type 1 diabetes. In addition, blood 

samples were obtained from unaffected siblings of patients with type 1 diabetes within a similar age 

range (n=72; median age 13 years; range 6-16 years). Forty-four were negative for all AAbs; 10 had 

a single AAb; 5 were positive for  2 AAbs; 7 were positive for 3 AAbs; 3 had all 4 AAbs. A further 4 

subjects were recruited via the Type 1 Diabetes TrialNet Pathway to Prevention study (TN-01) 

(median age of 16 years; range 12-18 years; 1 subject with a single AAb; 3 positive for  2 AAbs). To 

avoid biases in CD4 T cell responses due to varied possession of HLA class II molecules, only 

participants with one or both of the HLA-DRB1*0301 and *0401 genotypes were enrolled. In our 

previous studies the frequency of responses to IA-2, proinsulin and GAD65 peptides has not been 

significantly different between  HLA-DRB1*0301 and *0401  subjects (6; 13). Of subjects available 

for study, 12 children/adolescents with type 1 diabetes and 33 unaffected siblings were excluded on 

the basis of non-HLA-DRB1*0301 or *0401genotype. These studies were carried out with the 

approval of the UK National Research Ethics Service, and for blood studies informed consent was 

obtained from all participants or their parents/guardians. 
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Detection of β-cell specific cytokine secreting CD4+ T cells 

Peptides based on sequences of naturally processed and presented IA-2, proinsulin and GAD-65 

epitopes and overlapping regions of insulin B and A chains were synthesised and purified by HPLC 

(Thermohybaid, Germany). Pediacel, a penta-vaccine, was obtained from Sanofi Pasteur Ltd 

(Berkshire, UK) and used at 1l/ml to examine anamnestic responses induced by vaccination or 

infection as previously described (4).  Detection of interferon (IFN)-γ and IL-10 production by CD4+ 

T cells was carried out using an enzyme-linked immunospot (ELISPOT) as previously described (6; 

13) and performed blinded to the clinical status of the donor (type 1 diabetes or sibling; AAbs or 

not). Data are expressed as the mean number of spots per triplicate and compared with the mean spot 

number in the presence of diluent alone (stimulation index; SI) and a response is considered positive 

when the SI is ≥3 (6). IFN-responses to pediacel were similar in patients with type 1 diabetes and 

unaffected siblings (mean SI 79.7 versus 78.8, respectively) as were IL-10 responses (mean SI 20.5 

versus 26.7, respectively).   

Studies on islet-infiltrating leukocytes 

Formalin fixed paraffin embedded pancreas samples from 21 patients with type 1 diabetes from a 

previously described cohort (14) were included in the present study on the basis of confirmed 

insulitis, as defined in a recent position statement (10). These cases had a median age of 12 years 

(range 1-23 years) at disease onset and median disease duration of 1 week (1 day-6 months). Sections 

of pancreas (4µm) were mounted on glass slides previously coated with (3-aminopropyl)-

triethoxysilane (Sigma, Dorset, UK) then de-waxed and rehydrated in alcohol.  Antigens were 

visualised by standard horseradish peroxidase staining and, with the exception of insulin, were 

unmasked using heat induced epitope retrieval (HIER). For CD45 and CD20, HIER was achieved in 

10mmol/l citrate buffer, while CD4, CD8 and CD68 were retrieved with 10mmol/l Tris, 1mmol/l 

EDTA, pH9.0.  Primary antibodies where applied for 1 hour at room temperature, with exception of 

CD4 which required overnight incubation at 4°C.  Antigens were visualised using the Dako REALTM 

Detection System and analysed by light microscopy.  Ten insulin-containing islet sections were 
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selected at random in each case and the individual immune cell numbers per islet section were 

monitored by visual inspection of immunostained serial sections and recorded manually. Two 

additional cases were selected for study from within the Juvenile Diabetes Research Foundation 

network of Pancreatic Organ Donors (nPOD) on the basis of being the only samples in the 

bioresource from patients with recent onset diabetes (12 months). These cases (6113 and 6052) 

were examined by a combination of immunofluorescence, horseradish peroxidase and alkaline 

phosphatase staining for at least 2 antigens per section to minimise sample usage. Antigens were 

unmasked by HIER in 10 mmol/L citrate buffer, pH6.  Combined staining was achieved by 

employing guinea pig anti-insulin (Dako, #A056401) in sequence with mouse anti-CD45 (Abcam, 

#M0701); rabbit anti-glucagon (Dako, #A0565) after mouse anti-CD20 (Dako, #M0755); and mouse 

anti-CD68 (Dako,  #M0876) with rabbit anti-CD8 (Abcam, #GR404-4). Secondary antibodies were 

labelled with Dylight 405 (anti-guinea-pig 405, Stratech Scientific Ltd, Suffolk, UK; #106-475-003-

JIR) Alexafluor anti-mouse 488 (#A11029) or anti-rabbit 568 (#A1136; Invitrogen, Paisley, UK). 

Alkaline phosphatase was detected using a Vector Red Substrate kit (Vector Labs, UK; #AK-5100 

and #SK-5100) and cell nuclei were stained with TOPRO 3 Iodide (red; Invitrogen; #T3605) or 

DAPI (blue).  IF and brightfield images were captured on a Nikon 80i and Nikon 50i Eclipse 

Microscope, respectively.  

Statistical analysis 

T cell response data were aggregated for an autoantigen (proinsulin, insulin, GAD65, IA-2) and if 

any of the derivative peptides elicited a response, this autoantigen was considered positive. If 

responses to derivative(s) were positive, but any relevant test condition (peptide, IFN-γ, IL-10) for 

the same antigen was missing, the autoantigen test value was considered positive and the subject was  

included in the analysis. If responses to derivatives were negative, but any relevant test condition for 

the same antigen was missing, the autoantigen test value was considered missing and the subject was 

excluded from analysis. A total of 33 children/adolescents with type 1 diabetes out of 55 tested and 

72 unaffected siblings out of 97 tested were included in the analyses. The prevalence of positive 
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responses was established with confidence intervals of 95% and compared using Fisher’s exact test. 

Clustering was analysed by agglomerative hierarchical clustering with Ward's method, based on 

squared Euclidean distance between tests/patients. Support for clusters was estimated by multi-scale 

bootstrap re-sampling with 1000 replications, implemented in the R package pvclust (15). Principal 

component analysis (PCA) was performed using unscaled binary data with standard R functions on 

healthy siblings with at least two AAbs positive and rotation values from this dataset were applied to 

samples from children/adolescents with type 1 diabetes.  Differences in the immune cell infiltration 

into islet sections were assessed by Mann Whitney U test. Data were analysed using GraphPad Prism 

5 software or in statistical software environment R. A p value <0.05 was considered statistically 

significant. 
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Results  

Autoimmune inflammatory phenotypes in children with new-onset type 1 diabetes  

Blood samples from 33 consecutively newly-diagnosed children with type 1 diabetes were analyzed 

for the quality (IFN-γ, IL-10, AAbs) and specificity (proinsulin, insulin, IA-2, GAD65 and ZnT8) of 

autoimmune responses in a combinatorial approach. This analysis generated results for 27 analytes (3 

AAbs, 12 islet peptides each tested for two cytokines) which, in the case of the T cell responses, 

were combined to show responsiveness to the parent antigens (Table 1). Analysis of these data by 

agglomerative hierarchical clustering showed the formation of two highly stable autoimmune 

response clusters (bootstrap support for the main nodes ≥95%; Figure 1A) representing (i) a 

combination of islet AAbs and IFN-γ responses to all antigens, as distinct from (ii) IL-10 responses 

to all antigens. In the same analysis, patients with type 1 diabetes formed two distinct clusters 

(bootstrap support for the main nodes >97%; Figure 1B) of approximately equal size.  

Combined analysis of the patient and autoimmune response clusters using unbiased hierarchical 

clustering in a heatmap illustrates that the major discriminating factor between the two patient 

agglomerations is the presence of an IL-10 response (cluster-1, bottom left, Figure 1C). We applied 

additional analytical methods to support this conclusion. Cluster-1 patients have a significantly 

higher frequency of IL-10 response to GAD, insulin, proinsulin (all p<0.0001), IA-2 (p<0.02) than 

are seen in cluster-2. Importantly, there are also differences in the frequency of islet AAbs between 

clusters. AAbs against IA-2 (p<0.002) and ZnT8 (p<0.05) are significantly less frequent in the IL-

10-dominated cluster-1. Moreover, within cluster-1, 2 children had no islet AAbs present at 

diagnosis, 5 had only a single autoantibody and 8 had ≥2 AAbs. The frequency of multiple AAbs 

was significantly higher in cluster-2, in which all 18 children had ≥2 (p=0.0015).  

We did not observe significant biases in the distribution of the main diabetes-associated HLA alleles 

in the two agglomerations (DRB1*0401/X  and DRB1*0301/X genotypes both present in 6/15 (40%) 

of subjects in cluster-1, the remaining 3 subjects being heterozygous DRB1*0401/*0301; and  
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DRB1*0401/X  present in 11/18 (61%) and DRB1*0301/X in 3/18 (17%) of subjects in cluster-2, the 

4 remaining subjects (22%) being heterozygous). In contrast to the stable clustering we observed for 

aggregated analytes (Figures 1A-B), when single analytes are used the main clusters are less stable 

(bootstrap scores for the two main nodes 81% and 85%; data not shown), supporting an approach in 

which epitope-specific responses are aggregated. Principal component analysis (PCA) was explored 

to assist in subdivision of subjects or enable assay refinement by exclusion of redundant analytes. As 

shown in Figure 1D, although clustering patterns were largely reproduced, we did not find single 

prevalent sources of variation using this approach.  

To summarise, these data show that combining autoantibody and the quality of CD4 T cell responses 

to specific islet autoantigens partitions children with newly diagnosed type 1 diabetes into two 

distinct autoimmune response phenotypes, characterised by islet AAbs plus IFN-γ or a pauci-AAb, 

IL-10 dominated response. These data reveal a hitherto unidentified association between IL-10 

responses and regulated B lymphocyte responses in vivo. 

Autoimmune inflammatory phenotypes in non-diabetic siblings of children with type 1 diabetes  

We next further explored the disease relationship of the autoimmune response phenotypes we had 

defined by studying non-diabetic siblings of type 1 diabetes. First, we studied a group of siblings of 

type 1 diabetes patients. As expected, when comparing siblings with newly diagnosed children, islet 

AAbs, and especially IA-2Ab and ZnT8Ab were strongly associated with disease (Figure 2). 

However, IFN-γ CD4 T cell responses to derivative peptides of specific antigens, notably insulin and 

proinsulin, were also strongly and significantly diabetes-associated (Figure 2A-B). Indeed, when T 

cell responses were combined into a single analyte (ie the presence of an IFN-γ CD4 T cell response 

to any autoantigen), disease-association is comparable to detecting any islet AAb in terms of its 

ability to discriminate disease and health with equal sensitivity and specificity (Figure 2C).  

In contrast, IL-10 CD4 T cell responses show a similar prevalence in siblings and children with 

diabetes (Figure 2). However, when the clustering of aggregated analytes from the type 1 diabetes 

samples (Figure 1) was superimposed on the non-diabetic sibling population it is notable that there is 
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a large group of healthy islet AAb-negative children (low risk for type 1 diabetes) who have IL-10 

responses, but not IFN-γ responses to islet antigens (cluster top left, Figure 3A). Unsupervised 

clustering of aggregated analytes in non-diabetic siblings shows similar clustering (bootstrap scores 

for main clusters >93%; not shown). 

Autoimmune inflammatory phenotypes in multiple-autoantibody-positive non-diabetic siblings of 

children with type 1 diabetes  

To examine the relevance of autoimmune inflammatory phenotypes to the natural history of 

progression to type 1 diabetes, we identified a group of subjects with multiple (≥2) islet AAb 

positivity, a status known to confer high risk of progression to disease. In these subjects (n=14), 

analysis using the clustering model superimposed from the type 1 diabetes samples (Figure 1) shows 

a pattern of responses comparable to those seen in type 1 diabetes. Non-diabetic subjects with ≥2 

islet AAbs partition into two main clusters characterised by (i) the presence of IL-10 with sparse 

IFN-γ, and (ii) the presence of IFN-γ with sparse IL-10 (Figure 3B). Unsupervised analysis did not 

generate robust evidence of clustering, presumably reflecting the small numbers of high risk subjects 

studied. We also examined whether PCA could have potential as a tool for identifying outcomes in 

the same high-risk subjects with multiple (≥2) islet AAbs.  In the analysis superimposed on type 1 

diabetes patients, we identified two potential clusters by arbitrary means (labelled A and B, Figure 

1D). These are dominated by IFN-γ and IL-10, respectively, tending to reinforce the findings from 

cluster analysis. Applying the same analysis in high-risk siblings (Figure 3C) indicates subjects 

within the same potential clusters. Since our studies were initiated, 3 of the high-risk subjects 

developed diabetes. The subject in the “IL-10” dominated cluster was aged 18 years at diagnosis, 

whilst those in the “IFN-γ” cluster were aged 6 and 10 years.  

Heterogeneity of islet infiltration in recent onset type 1 diabetes 

We considered the possibility that findings in the blood might have correlates in the pancreata of 

patients with type 1 diabetes (not available from the same cohort) and therefore examined insulitic 

profiles in a large historical tissue collection from children (n=21) who had died close to diagnosis of 
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diabetes (14). This revealed considerable variation in the absolute numbers of immune cells per islet 

identified by staining for CD45, CD20, CD4, CD8 and CD68. We noted a particularly high 

coefficient of variation for CD20 staining as an indication of dispersion of the frequency distribution 

(Table 2). This was consistent with our subjective analysis by microscopy in which we observed two 

distinct patterns of infiltration: one characterised by relatively large numbers of infiltrating immune 

cells, but especially CD20+, and the other by a relative paucity of immune cells with very low 

numbers being CD20+. Of note, similar patterns were seen in an additional two patients obtained via 

the nPOD collection, ascertained within 12 months of diagnosis (Figure 4A-F).  

To simplify the analysis, we ranked the 21 subjects in our collection by CD20 staining and identified 

an inflection, the mid-point of which (mean of 3.7 CD20+ cells per islet section; Supplementary 

Figure 1) was used to define “CD20Hi” and “CD20Lo” staining patterns. This divided the cohort 

into two approximately equal-sized groups (n=9 and n=12, respectively). These two groups 

significantly differed in the number of total (CD45+) immune cells (mean (SEM) of 29.9 (4.3) versus 

13.2 (0.8) cells per islet section for the CD20Hi and CD20Lo groups, respectively, p<0.01) and in 

cell numbers of the constituent subsets such as CD20, CD8 (Figure 4G-H; p<0.01 for both) and 

CD4 (p=0.03), leading us to term these “hyper-immune CD20Hi” and “pauci-immune CD20Lo” 

patterns. CD68+ cells were not significantly different between the groups (p>0.05). Differences 

between the two groups could not be ascribed to differences in the β-cell status of the islets studied, 

since we examined the immune cell infiltration only in those islets with residual immune-staining for 

insulin (ie islets with remaining β-cells). These data indicate that patterns of infiltration may 

represent functionally important pathological phenotypes, a contention borne out by two further 

observations. First, we found that hyper-immune CD20Hi subjects had significantly fewer insulin-

containing islets as a proportion of all islets identified than pauci-immune CD20Lo subjects (mean 

(SEM) 15.5% (4.8) versus 38.3% (6.9); p=0.02). Second, we noted that the mean age of subjects 

with hyper-immune CD20Hi infiltration was significantly lower than that of pauci-immune CD20Lo 

subjects among this cohort (mean (SEM) 7.8 (1.7) years versus 13.0 (1.5) years; p=0.03).  
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Taken together, these data suggest that children and adolescents studied close to diagnosis of type 1 

diabetes may be distinguished by their tissue pathology into two age-related and residual insulin-

related patterns, characterised by high and low degrees of cellularity and B lymphocyte infiltration.  
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Discussion 

In the present study we use two complementary analyses, in tissue and blood, to identify disease-

related sub-phenotypes in type 1 diabetes. Our blood-based study shows that approximately half of 

patients analyzed close to diagnosis have T cell responses characterised by IFN-γ, whilst half are 

distinguished by having IL-10 responses along with significantly fewer autoantibodies. In pancreas 

tissue obtained close to disease diagnosis, approximately half of the patients studied show an 

inflammatory islet infiltration distinguished by high numbers of CD20+ B lymphocytes, whilst half 

of the patients have sparse infiltration and significantly fewer B lymphocytes. We speculate that 

these blood and tissue phenotypes are related, provide a potential pathophysiological basis for 

disease heterogeneity of relevance to stratification for therapeutic trials. 

 

β-cell specific autoreactivity in the blood is the hallmark of type 1 diabetes (2). The present study is 

the first, to our knowledge, to simultaneously assess multiple parameters of autoimmunity that span 

CD4 T cell and B lymphocyte responses using integrated, multi-dimensional clustering analysis. We 

show that in children/adolescents who develop type 1 diabetes, it is likely that one or other 

autoimmune response phenotype, definable as [AAb++ and IFN-γ>>IL-10] and [AAb and IFN-

γ<<IL-10] is dominant at the late stage of disease. In addition, we find the same autoimmune 

response phenotypes in non-diabetic individuals with multiple (≥2) AAbs and high-risk of 

progression to type 1 diabetes. Successive studies will require longitudinal follow-up of the high risk 

group to establish whether the autoimmune response phenotypes are stable over time and indicate a 

fixed pathway of disease progression, which would be important for deployment of such analyses as 

stratification tools in prevention studies. Further development and refinement of the multi-parameter 

model could be achieved through inclusion of additional measurements of autoreactivity, such as 

circulating CD8 T cells specific for β-cell epitopes (3; 16). This approach may prove of clinical value 

but will require greater numbers to be studied and a longer period of follow-up. 
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In addition to these studies in the blood, we returned to a collection of samples obtained post mortem, 

close to diagnosis of type 1 diabetes, on which we have previously published our findings on the 

immune cell infiltrate (10; 14; 17; 18). Using a new consensus classification of insulitis (10) and 

focusing on defining patient-specific immune cell infiltration, we made the novel observation that 

patients can be categorized according to hyper-immune CD20Hi and pauci-immune CD20Lo 

insulitis phenotypes. When considered in the light of our observations in the blood, an obvious 

conclusion is that hyper-immune CD20Hi subjects have the [AAb++ and IFN-γ>>IL-10] 

autoimmune response phenotype, whilst pauci-immune CD20Lo subjects demonstrate [AAb and 

IFN-γ<<IL-10] reactivity. This speculation derives some support from the fact that both sub-

phenotypes (immunohistological and blood-derived) divided the subjects studied into roughly equal-

sized halves. In addition, clear mechanistic links can be drawn between having pauci-AAb status in 

the blood (presumably as a result of antigen-specific immune regulation by islet-specific IL-10+ 

CD4 T cells (19)) and low or absent levels of B lymphocyte infiltration in the islets. Future studies 

will be required to focus on the mechanisms of this effect, and whether it involves additional cell 

types such as the recently described T follicular helper and T follicular regulatory cells (20; 21). The 

linking of these blood and islet findings represents a vital conjecture, which will require additional 

studies of both the T cells and histology from the same patient, for example via the Juvenile Diabetes 

Research Foundation network of Pancreatic Organ Donors (nPOD) collection. This inability to link 

blood and islet phenotypes in the same individual represents an important limitation of our study, as 

does the relatively brief follow-up and lack of prospective studies, but these issues can be addressed 

in future cohorts. 

 

The observations in relation to age and type of autoimmune response  in this and our previous study 

(6) raise the question as to the underlying basis for the different sub-phenotypes we have observed. It 

could be that disease endotypes exist that reflect different immunological pathways to disease, as has 

been proposed in asthma (22; 23). An alternative possibility is that the underlying effector pathways 

Commented [MP1]: Can anyone add any more? 
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are not intrinsically different, but that the degree of immune regulation is a dominant discriminative 

feature. In this scheme, the pauci-immune CD20Lo and [AAb and IFN-γ<<IL-10] immune 

phenotypes could be considered to indicate “partially regulated” effector responses which may be 

more likely to be present in older subjects (24). We have previously shown that IL-10-secreting β-

cell specific CD4 T cells have potent regulatory properties (19) and are present in healthy subjects 

and relatively enriched in older adults developing type 1 diabetes (19) . In the present study we 

reinforce this concept by reproducing a previous finding that IL-10-mediated autoreactivity is 

frequently detected in siblings of type 1 diabetes patients who are AAb-negative and have very low 

disease risk (25). We also extend the concept by showing evidence of operational autoreactive B 

lymphocyte non-responsiveness (tolerance) in vivo when IL-10 responses are present. Taken together 

these observations emphasise the importance of autoreactive CD4 T cells that secrete IL-10 in 

influencing disease pathogenesis.  

 

Most relevant to current translational objectives in type 1 diabetes perhaps, are the potential 

implications of our study for therapeutic strategies. The question of whether type 1 diabetes is a 

heterogeneous disease has taken on considerable importance in recent years as successful immune-

based therapies begin to be tested in Phase II-III clinical trials (26-30). Heterogeneity, or the 

existence of endotypes defined by discrete pathophysiological mechanisms with the potential to 

explain distinct clinical features and response to treatment, could open up the prospect of 

stratification and personalised medicine, both of which are emerging aspirations for the management 

of complex autoimmune and inflammatory diseases in modern healthcare systems (31). As one 

obvious example of the “translatability” of our findings, it is likely that B lymphocyte depletion 

using rituximab would have a different therapeutic impact, depending on whether CD20+ cells are a 

dominant feature of insulitis and actively engaged in the inflammatory process as indicated by 

biomarkers such as multiple circulating AAbs and IFN-γ production, or not, as evidenced by few or 

no AAbs and high IL-10 responses. Indeed, the original report of rituximab intervention therapy in 
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type 1 diabetes shows trends for greater treatment efficacy (preservation of stimulated C-peptide) in 

younger versus older patients and those with greater than or equal to two AAbs as opposed to those 

with a single specificity (30).  Thus it seems probable that future studies of this and other 

therapeutics for prevention of β-cell destruction are likely to benefit from a greater emphasis on 

prospective and post hoc analyses that make use of multi-parameter measurements of T and B 

lymphocyte autoreactivity such as those defined in our study.  
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Table 1. Autoantigens and derivative peptide epitopes tested in T cell assays 

Parent 

antigen 

Region Sequence Relevant T 

cell studies 

Designation 

in analyses  

Insulin (A 

+ B 

chains) 

A1-21 GIVEQCCTSICSLYQLENYCNK N/A Ins (1) 

 B1-20 FVNQHLCGSHLVEALYLVCGK N/A Ins (2) 

 B6-25 LCGSHLVEALYLVCGERGFFK N/A Ins (3) 

 B11-30 LVEALYLVCGERGFFYTPKTK N/A Ins (4) 

Proinsulin C13-32 GGGPGAGSLQPLALEGSLQK cited(6) PI (5) 

 C19-A3 GSLQPLALEGSLQKRGIV cited(4; 6; 

13) 

PI (6) 

 C22-A5 QPLALEGSLQKRGIVEQ cited(6) PI (7) 

IA-2 709-736 LAKEWQALCAYQAEPNTCATAQGEGNIK cited(4; 6; 

13) 

IA-2 (8) 

 752-775 KLKVESSPSRSDYINASPIIEHDP cited(4; 6; 

13) 

IA-2 (9) 

 853-872 SFYLKNVQTQETRTLTQFHF cited(4; 6; 

13) 

IA-2 (10) 

GAD65 335-352 TAGTTVYGAFDPLLAVAD cited(4; 13) GAD (11) 

 555-567 NFIRMVISNPAAT cited(4) GAD (12) 
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Table 2. Immunohistological findings in post mortem analysis of pancreas from 21 Type 1 

diabetes patients 

 Immune cell markers 

 CD8 CD68 CD20 CD4 

Mean (cells stained per islet) 11.2 7.0 5.5 3.7 

Std. Deviation 9.4 6.1 8.0 3.1 

Lower 95% CI of mean 6.9 4.2 1.8 2.3 

Upper 95% CI of mean 15.4 9.7 9.1 5.1 

Number of subjects 21 21 21 21 

Coefficient of variation (%) 83.9 87.1 147.0 83.9 
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Figure 1: Cluster analysis of autoreactive T cell and autoantibody responses in the blood close 

to diagnosis of type 1 diabetes. Blood samples from 33 consecutively newly-diagnosed children 

with type 1 diabetes were analyzed for the quality (IFN-γ, IL-10, AAbs) and specificity (proinsulin, 

insulin, IA-2, GAD65 and ZnT8) of autoimmune responses, generating results for 27 analytes 

summed to show responsiveness to the parent antigens. (A) Dendrogram shows agglomerative 

hierarchical clustering analysis which reveals two highly stable autoimmune response clusters 

(bootstrap support for the main nodes ≥95%) a combination of islet AAbs and IFN-γ responses to all 

antigens tested (right cluster), as distinct from IL-10 responses to all antigens tested (left cluster). (B) 

Dendrogram shows agglomerative hierarchical clustering analysis in which patients with type 1 

diabetes form two distinct clusters (bootstrap support for the main nodes ≥97%) of approximately 

equal size. (C) Combined analysis of the patient and autoimmune response clusters using unbiased 

hierarchical clustering in a heatmap illustrates that the major discriminating factor between the two 

patient agglomerations is the presence of an IL-10 response (cluster-1 bottom left). Yellow indicates 

positive response to an analyte; blue is negative. CD4 T cell peptide-specific responses are 

summarised into proteins (IA-2, GAD, PI and Ins). Panel (D) shows plots of the two principal 

components of autoreactive T cell responses in patients with type 1 diabetes, each identified as 

circles. The colour of the symbol indicates AAb positivity (open = no AAb; yellow = 1 AAb+; 

orange = 2 AAb+; red = 3 AAb+). Numbered, arrowed blue lines represent vectors indicating the 

influence of individual analyte responses on PC1 and PC2, in which the length of the arrow reflects 

the strength of the effect; continuous blue lines are IFN-γ and broken lines IL-10 responses, 

respectively and numbers 1-12 are the peptide identifiers (Table 1).  The dashed oval outlines 

indicate putative patient clusters, with Cluster A predominantly reflecting IFN- γ and Cluster B IL-10 

responses, respectively.  

 

Figure 2: Autoimmune inflammatory phenotypes in non-diabetic siblings of children with type 

1 diabetes. Graphs compared frequency of response to islet autoantigens in siblings of type 1 
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diabetes patients collected in a cross-sectional study (y-axis) with that in type 1 diabetes patients 

matched for age and studied close to diagnosis (x-axis). Blue circles denote IL-10 responses; red 

circles IFN-γ responses; and green circles AAb responses. Filled circles indicate a statistically 

significant difference (p<0.05) in the frequency of responses between the two groups. Grey lines are 

95% confidence intervals. Numbered symbols in panel A indicate individual autoantigen peptides 

(see Table 1). (A) Comparison of response frequency against single analytes. Islet AAbs, and 

especially IA-2Ab and ZnT8Ab are strongly diabetes-associated measurements. In (B), single T cell 

analytes have been summed to indicate a response to a single autoantigen. IFN-γ CD4 T cell 

responses to specific antigens, notably insulin and proinsulin peptides, are strong and significant.  In 

(C) T cell analytes have been summed to show a positive response to any autoantigen and AAb 

responses summed to show positivity to any autoantigen; disease-discrimination is comparable 

between AAbs and T cell responses.  

 

Figure 3: Clustering analysis of autoimmune inflammatory phenotypes in siblings. Unbiased 

hierarchical clustering analysis of autoimmune CD4 T cell and AAb responses represented as 

heatmaps. (A) Analysis of unaffected siblings collected in an unbiased, cross-sectional study. (B) 

Analysis of high-risk, unaffected siblings with multiple (≥2) islet AAbs positivity showing two main 

clusters characterised by the presence of IL-10 with sparse IFN-γ (lower left) and the presence of 

IFN-γ with sparse IL-10 (upper right). Yellow indicates positive response to an analyte; blue is 

negative. CD4 T cell peptide-specific responses are summarised into proteins (IA-2, GAD, PI and 

Ins). Panel (C) shows plots of the two principal components for siblings with ≥2 islet AAbs and at 

high-risk of progression to disease; each subject is identified by a diamond. The colour of the symbol 

indicates AAb positivity (open = no AAb; yellow = 1 AAb+; orange = 2 AAb+; red = 3 AAb+; 

brown = 4 AAb+). For explanation of blue lines see Figure 1D legend. The same dotted-line ovals as 

in Figure 1D are overlaid and the corresponding Clusters A (IFN-γ dominated) and B (IL-10 

dominated) are identifiable in high-risk subjects. The subjects identified by arrows (a) and (b) and 
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present in Cluster A developed type 1 diabetes (ages 6 and 10 years respectively at diagnosis); the 

subject identified by arrow (c) in Cluster B developed type 1 diabetes aged 18 years. 

 

Figure 4. Immunohistological analysis of pancreas from patients with type 1 diabetes reveals 

heterogeneity of insulitis. Panels show staining for CD20+ cells in 3 representative islets from a 

single patient with abundant positivity (nPOD6052; panels A-C) and a single patient with absence of 

positivity (nPOD6070; panels D-F). Staining patterns correspond to “hyper-immune CD20Hi” and 

“pauci-immune CD20Lo”, respectively. CD20 staining was used to subdivide the 21 patients into 

CD20Hi and CD20Lo categories using mean CD20+ cell counts above and below 3.7 cells/islet.  

 


