33 research outputs found

    Frequent false positive beta human chorionic gonadotropin tests in immunoglobulin A deficiency

    No full text
    A patient with IgA deficiency had a series of positive serum pregnancy tests which led to medical and surgical procedures for suspected molar pregnancy. These tests were found to be falsely positive due to heterophile antibody. The aim of this study was to determine the frequency of false positive βhCG assays in sera of IgA deficient patients. Sera from a panel of IgA deficient (IgA < 7 mg/dl) patients were tested for the presence of βHCG using three different assays, and also for IgG anti-goat and anti-mouse antibodies. Patients were seen at Mount Sinai Medical Center and included 54 patients (ages 1–80 years, 32 females, 22 males) with IgA deficiency. Thirty percent of 54 IgA deficient patient sera yielded positive pregnancy tests by one or more of the three βhCG assays, however, none of the patients were pregnant. In comparison to sera of normal controls, 39% of the patient sera contained significant amounts of anti-goat antibody and 18% contained significant amounts of anti-mouse antibody. While heterophile antibodies are common in IgA deficient serum, false positive assays for βhCG in IgA deficient serum have not been previously reported. The possibility of false positive test results should be considered prior to invasive procedures in IgA deficient patients

    Blinking Molecule Tracking

    No full text
    Abstract We discuss a method for tracking individual molecules which globally optimizes the likelihood of the connections between molecule positions fast and with high reliability even for high spot densities and blinking molecules. Our method works with cost functions which can be freely chosen to combine costs for distances between spots in space and time and which can account for the reliability of positioning a molecule. To this end, we describe a top-down polyhedral approach to the problem of tracking many individual molecules. This immediately yields an effective implementation using standard linear programming solvers. Our method can be applied to 2D and 3D tracking.

    Influence of the Glass Transition on Rotational Dynamics of Dyes in Thin Polymer Films. Single Molecule and Ensemble Experiments

    Get PDF
    We performed polarized fluorescence emission studies of Nile Red (NR) in poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA), and poly(butyl methacrylate) (PBMA) at the single molecule (SM) and at the ensemble level to study the in cage movements of the ground-state molecule in polymer films of nanometric thickness at room temperature. Experiments were performed with wide field irradiation. At the ensemble level, the linearly polarized irradiation was used to induce a photoselection by bleaching, which is compensated by rotational diffusion. Both results show an appreciable difference in mobility of NR in the films that is correlated with the different glass-transition temperatures of the films, particularly in PEMA, which displays a clearly distinct behavior between the 200 nm films, representing a rigid environment, and the 25 nm ones, showing much higher mobility. We developed a model of broad application for polarized photobleaching that allows obtaining rotational diffusion coefficients and photobleaching quantum yields in an easy way from ensemble experiments. The parameters obtained from ensemble measurements correlate well with the results from SM experiments.Fil: Araoz, Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Carattino, Aquiles. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Täuber, Daniela. Technische Universitat Chemnitz; AlemaniaFil: Von Borczyskowski, Christian. Technische Universitat Chemnitz; AlemaniaFil: Aramendia, Pedro Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentin

    Molecule-based photonically switched half and full adder

    Full text link
    A single molecule logic gate using electronically excited states and ionization/fragmentation can take advantage of the differences in cross-sections for one and two photon absorption. Fault tolerant optically pumped half adder and full adder are discussed as applications. A full adder requires two separate additions, and the logic concatenation that is required to implement this is physically achieved by an intramolecular transfer along the side chain of 2-phenylethyl-N,N-dimethylamine (PENNA). Solutions of the kinetic equations for the temporal evolution of the concentration of different states in the presence of time-varying laser fields are used to illustrate the high contrast ratios that are potentially possible for such devices

    The risk of allergic reaction to SARS-CoV-2 vaccines and recommended evaluation and management : a systematic review, meta-analysis, GRADE assessment, and international consensus approach

    No full text
    Concerns for anaphylaxis may hamper severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunization efforts. We convened a multidisciplinary group of international experts in anaphylaxis composed of allergy, infectious disease, emergency medicine, and front-line clinicians to systematically develop recommendations regarding SARS-CoV-2 vaccine immediate allergic reactions. Medline, EMBASE, Web of Science, the World Health Organizstion (WHO) global coronavirus database, and the gray literature (inception, March 19, 2021) were systematically searched. Paired reviewers independently selected studies addressing anaphylaxis after SARS-CoV-2 vaccination, polyethylene glycol (PEG) and polysorbate allergy, and accuracy of allergy testing for SARS-CoV-2 vaccine allergy. Random effects models synthesized the data to inform recommendations based on the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) approach, agreed upon using a modified Delphi panel. The incidence of SARS-CoV-2 vaccine anaphylaxis is 7.91 cases per million (n = 41,000,000 vaccinations; 95% confidence interval [95% CI] 4.02-15.59; 26 studies, moderate certainty), the incidence of 0.15 cases per million patient-years (95% CI 0.11-0.2), and the sensitivity for PEG skin testing is poor, although specificity is high (15 studies, very low certainty). We recommend vaccination over either no vaccination or performing SARS-CoV-2 vaccine/excipient screening allergy testing for individuals without history of a severe allergic reaction to the SARS-CoV-2 vaccine/excipient, and a shared decision-making paradigm in consultation with an allergy specialist for individuals with a history of a severe allergic reaction to the SARS-CoV-2 vaccine/excipient. We recommend further research to clarify SARS-CoV-2 vaccine/vaccine excipient testing utility in individuals potentially allergic to SARS-CoV2 vaccines or their excipients
    corecore