228 research outputs found
Measuring Earthquakes from Optical Satellite Images
Système pour l'Observation de la Terre images are used to map ground displacements induced by earthquakes. Deformations (offsets) induced by stereoscopic effect and roll, pitch, and yaw of satellite and detector artifacts are estimated and compensated. Images are then resampled in a cartographic projection with a low-bias interpolator. A subpixel correlator in the Fourier domain provides two-dimensional offset maps with independent measurements approximately every 160 m. Biases on offsets are compensated from calibration. High-frequency noise (0.125 m^-1 ) is ~0.01 pixels. Low-frequency noise (lower than 0.001 m^-1 ) exceeds 0.2 pixels and is partially compensated from modeling. Applied to the Landers earthquake, measurements show the fault with an accuracy of a few tens of meters and yields displacement on the fault with an accuracy of better than 20 cm. Comparison with a model derived from geodetic data shows that offsets bring new insights into the faulting process
Phenoloxidase and peroxidase activities in Sphagnum-dominated peatland in a warming climate
International audiencePeatlands still suffer from the scarcity of available data about the characterization and the response to climate forcing of the main oxidative enzymes that occur over the seasons. In the present study, phenoloxidase and peroxidase activities were examined in Sphagnum lawns along a narrow fen-bog gradient under experimental elevated temperatures. We showed that peroxidase activities from Sphagnum mosses were 1000-fold higher than those of phenoloxidases irrespective of seasons and sampling areas. Peroxidase activities increased (+30%) with the rise of air temperatures (an average of 1 °C), while warming did not alter phenoloxidase activities. These results suggest that the monitoring of peroxidase activities in peatlands may represent a suitable and forward indicator of the impact of climate warming on carbon cycle in peatlands
Effect of a temperature gradient on Sphagnum fallax and its associated living microbial communities: a study under controlled conditions.
International audienceMicrobial communities living in Sphagnum are known to constitute early indicators of ecosystem disturbances, but little is known about their response (including their trophic relationships) to climate change. A microcosm experiment was designed to test the effects of a temperature gradient (15, 20, and 25°C) on microbial communities including different trophic groups (primary producers, decomposers, and unicellular predators) in Sphagnum segments (0-3 cm and 3-6 cm of the capitulum). Relationships between microbial communities and abiotic factors (pH, conductivity, temperature, and polyphenols) were also studied. The density and the biomass of testate amoebae in Sphagnum upper segments increased and their community structure changed in heated treatments. The biomass of testate amoebae was linked to the biomass of bacteria and to the total biomass of other groups added and, thus, suggests that indirect effects on the food web structure occurred. Redundancy analysis revealed that microbial assemblages differed strongly in Sphagnum upper segments along a temperature gradient in relation to abiotic factors. The sensitivity of these assemblages made them interesting indicators of climate change. Phenolic compounds represented an important explicative factor in microbial assemblages and outlined the potential direct and (or) indirect effects of phenolics on microbial communities
Experimental climate effect on seasonal variability of polyphenol/phenoloxidase interplay along a narrow fen-bog ecological gradient in Sphagnum fallax
International audienceExtracellular phenoloxidase enzymes play an important role in the stability of soil carbon storage by contributing to the cycling of complex recalcitrant phenolic compounds. Climate warming could affect peatland functioning through an alteration of polyphenol/phenoloxidase interplay, which could lead them to becoming weaker sinks of carbon. Here, we assessed the seasonal variability of total phenolics and phenoloxidases subjected to 2-3 °C increase in air temperature using open-top chambers. The measurements were performed along a narrow fen-bog ecological gradient over one growing season. Climate warming had a weak effect on phenoloxidases, but reduced phenolics in both fen and bog areas. Multivariate analyses revealed a split between the areas and also showed that climate warming exacerbated the seasonal variability of polyphenols, culminating in a destabilization of the carbon cycle. A negative relationship between polyphenols and phenoloxidases was recorded in controls and climate treatments suggesting an inhibitory effect of phenolics on phenoloxidases. Any significant decrease of phenolics through repeatedly elevated temperature would greatly impact the ecosystem functioning and carbon cycle through an alteration of the interaction of polyphenols with microbial communities and the production of extracellular enzymes. Our climate treatments did not have the same impact along the fen-bog gradient and suggested that not all the peatland habitats would respond similarly to climate forcing
High-Resolution Optical Line Width Measurements as a Material Characterization Tool
We present a case study on Eu^(3+)-doped Y_2O_3 transparent ceramics in which high-resolution laser spectroscopy is used as a material characterization tool. By comparing the results from coherent and incoherent optical spectroscopy with other characterization methods, we show that optical techniques can deliver supplementary information about the local environment of the activator ions in materials. Thus, high-resolution spectroscopy may be of interest for the investigation of a wider range of rare earth doped optical materials beyond materials studied for quantum information technology. The refinement of optical spectroscopy for the study of narrow optical transitions in rare earth ion single crystals has demonstrated that these techniques are extremely sensitive tools for probing the local environment of the rare earth ion. These techniques, such as photon echo experiments, have been important in developing materials for quantum information technology and spectral filtering applications. Here, we apply these techniques to transparent ceramic samples and compare the results with information gained from conventional material characterization techniques. Our present study demonstrates the high sensitivity of laser spectroscopic methods to microstructural strain and the presence of defects. In particular, the sensitivity is sufficient to detect small changes introduced by different thermal treatments in nominally equivalent materials. The results of our work show that it is possible to relate high-resolution optical measurements to defects and microstructural strain
Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions
International audiencePeatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatland
Design and methodology of the Swiss Transplant Cohort Study (STCS): a comprehensive prospective nationwide long-term follow-up cohort
In Switzerland, organ procurement is well organized at the national-level but transplant outcomes have not been systematically monitored so far. Therefore, a novel project, the Swiss Transplant Cohort Study (STCS), was established. The STCS is a prospective multicentre study, designed as a dynamic cohort, which enrolls all solid organ recipients at the national level. The features of the STCS are a flexible patient-case system that allows capturing all transplant scenarios and collection of patient-specific and allograft-specific data. Beyond comprehensive clinical data, specific focus is directed at psychosocial and behavioral factors, infectious disease development, and bio-banking. Between May 2008 and end of 2011, the six Swiss transplant centers recruited 1,677 patients involving 1,721 transplantations, and a total of 1,800 organs implanted in 15 different transplantation scenarios. 10% of all patients underwent re-transplantation and 3% had a second transplantation, either in the past or during follow-up. 34% of all kidney allografts originated from living donation. Until the end of 2011 we observed 4,385 infection episodes in our patient population. The STCS showed operative capabilities to collect high-quality data and to adequately reflect the complexity of the post-transplantation process. The STCS represents a promising novel project for comparative effectiveness research in transplantation medicin
- …