2,214 research outputs found

    Karhunen-Lo\`eve Data Imputation in High Contrast Imaging

    Full text link
    Detection and characterization of extended structures is a crucial goal in high contrast imaging. However, these structures face challenges in data reduction, leading to over-subtraction from speckles and self-subtraction with most existing methods. Iterative post-processing methods offer promising results, but their integration into existing pipelines is hindered by selective algorithms, high computational cost, and algorithmic regularization. To address this for reference differential imaging (RDI), here we propose the data imputation concept to Karhunen-Lo\`eve transform (DIKL) by modifying two steps in the standard Karhunen-Lo\`eve image projection (KLIP) method. Specifically, we partition an image to two matrices: an anchor matrix which focuses only on the speckles to obtain the DIKL coefficients, and a boat matrix which focuses on the regions of astrophysical interest for speckle removal using DIKL components. As an analytical approach, DIKL achieves high-quality results with significantly reduced computational cost (~3 orders of magnitude less than iterative methods). Being a derivative method of KLIP, DIKL is seamlessly integrable into high contrast imaging pipelines for RDI observations.Comment: 7 pages, 5 figures, A&A accepte

    Loss of FKBP5 Affects Neuron Synaptic Plasticity: An Electrophysiology Insight

    Get PDF
    FKBP5 (FKBP51) is a glucocorticoid receptor (GR) binding protein, which acts as a co-chaperone of heat shock protein 90 (HSP90) and negatively regulates GR. Its association with mental disorders has been identified, but its function in disease development is largely unknown. Long-term potentiation (LTP) is a functional measurement of neuronal connection and communication, and is considered one of the major cellular mechanisms that underlies learning and memory, and is disrupted in many mental diseases. In this study, a reduction in LTP in Fkbp5 knockout (KO) mice was observed when compared to WT mice, which correlated with changes to the glutamatergic and GABAergic signaling pathways. The frequency of mEPSCs was decreased in KO hippocampus, indicating a decrease in excitatory synaptic activity. While no differences were found in levels of glutamate between KO and WT, a reduction was observed in the expression of excitatory glutamate receptors (NMDAR1, NMDAR2B and AMPAR), which initiate and maintain LTP. The expression of the inhibitory neurotransmitter GABA was found to be enhanced in Fkbp5 KO hippocampus. Further investigation suggested that increased expression of GAD65, but not GAD67, accounted for this increase. Additionally, a functional GABAergic alteration was observed in the form of increased mIPSC frequency in the KO hippocampus, indicating an increase in presynaptic GABA release. Our findings uncover a novel role for Fkbp5 in neuronal synaptic plasticity and highlight the value of Fkbp5 KO as a model for studying its role in neurological function and disease development

    Osseous differentiation of human fat tissue grafts: From tissue engineering to tissue differentiation

    Get PDF
    Conventional bone tissue engineering approaches require isolation and in vitro propagation of autologous cells, followed by seeding on a variety of scaffolds. Those protracted procedures impede the clinical applications. Here we report the transdifferentiation of human fat tissue fragments retrieved from subcutaneous fat into tissue with bone characteristics in vitro without prior cell isolation and propagation. 3D collagen-I cultures of human fat tissue were cultivated either in growth medium or in osteogenic medium (OM) with or without addition of Bone Morphogenetic Proteins (BMPs) BMP-2, BMP-7 or BMP-9. Ca2+ depositions were observed after two weeks of osteogenic induction which visibly increased when either type of BMP was added. mRNA levels of alkaline phosphatase (ALP) and osteocalcin (OCN) increased when cultured in OM alone but addition of BMP-2, BMP-7 or BMP-9 caused significantly higher expression levels of ALP and OCN. Immunofluorescent staining for OCN, osteopontin and sclerostin supported the observed real-time-PCR data. BMP-9 was the most effective osteogenic inducer in this system. Our findings reveal that tissue regeneration can be remarkably simplified by omitting prior cell isolation and propagation, therefore removing significant obstacles on the way to clinical applications of much needed regeneration treatments

    Stellar Flyby Analysis for Spiral Arm Hosts with Gaia DR3

    Full text link
    Scattered light imaging studies have detected nearly two dozen spiral arm systems in circumstellar disks, yet the formation mechanisms for most of them are still under debate. Although existing studies can use motion measurements to distinguish leading mechanisms such as planet-disk interaction and disk self-gravity, close-in stellar flybys can induce short-lived spirals and even excite arm-driving planets into highly eccentric orbits. With unprecedented stellar location and proper motion measurements from Gaia DR3, here we study for known spiral arm systems their flyby history with their stellar neighbours by formulating an analytical on-sky flyby framework. For stellar neighbors currently located within 10 pc from the spiral hosts, we restrict the flyby time to be within the past 10410^4 yr and the flyby distance to be within 1010 times the disk extent in scattered light. Among a total of 1257012570 neighbors that are identified in Gaia DR3 for 2020 spiral systems, we do not identify credible flyby candidates for isolated systems. Our analysis suggests that close-in recent flyby is not the dominant formation mechanism for isolated spiral systems in scattered light.Comment: 14 pages, 4 figures, 2 tables, ApJS accepted. Data files for Table 2 in the ancillary folder. Code framework available at https://github.com/slinling/afm-spiral

    Suppression of Black-body Radiation Induced Zeeman Shifts in the Optical Clocks due to the Fine-structure Intramanifold Resonances

    Full text link
    The roles of the fine-structure intramanifold resonances to the Zeeman shifts caused by the blackbody radiation (BBRz shifts) in the optical clock transitions are analyzed. The clock frequency measurement in the 1S03P0^1S_0-^3P_0 clock transition of the singly charged aluminium ion (Al+^+) has already been reached the 101910^{-19} level at which the BBRz effect can be significant in determining the uncertainty. In view of this, we probe first the BBRz shift in this transition rigorously and demonstrate the importance of the contributions from the intramanifold resonances explicitly. To carry out the analysis, we determine the dynamic magnetic dipole (M1) polarizabilities of the clock states over a wide range of angular frequencies by employing two variants of relativistic many-body methods. This showed the BBRz shift is highly suppressed due to blue-detuning of the BBR spectrum to the 3P03P1^3P_0-^3P_1 fine-structure intramanifold resonance in Al+^+ and it fails to follow the usually assumed static M1 polarizability limit in the estimation of the BBRz shift. The resonance also leads to a reversal behavior of the temperature dependence and a cancellation in the shift. After learning this behavior, we extended our analyses to other optical clocks and found that these shifts are of the order of micro-hertz leading to fractional shifts in the clock transitions at the 102010^{-20} level or below

    NMF-based GPU accelerated coronagraphy pipeline

    Full text link
    We present a generalized Non-negative factorization (NMF)-based data reduction pipeline for circumstellar disk and exoplanet detection. By using an adaptable pre-processing routine that applies algorithmic masks and corrections to improper data, we are able to easily offload the computationally-intensive NMF algorithm to a graphics processing unit (GPU), significantly increasing computational efficiency. NMF has been shown to better preserve disk structural features compared to other post-processing approaches and has demonstrated improvements in the analysis of archival data. The adaptive pre-processing routine of this pipeline, which automatically aligns and applies image corrections to the raw data, is shown to significantly improve chromatic halo suppression. Utilizing HST-STIS and JWST-MIRI coronagraphic datasets, we demonstrate a factor of five increase in real-time computational efficiency by using GPUs to perform NMF compared to using CPUs. Additionally, we demonstrate the usefulness of higher numbers of NMF components with SNR and contrast improvements, which necessitates the use of a more computationally efficient approach for data reduction

    A functional variant in the serotonin receptor 7 gene (HTR7), rs7905446, is associated with good response to SSRIs in bipolar and unipolar depression.

    Get PDF
    Predicting antidepressant response has been a clinical challenge for mood disorder. Although several genome-wide association studies have suggested a number of genetic variants to be associated with antidepressant response, the sample sizes are small and the results are difficult to replicate. Previous animal studies have shown that knockout of the serotonin receptor 7 gene (HTR7) resulted in an antidepressant-like phenotype, suggesting it was important to antidepressant action. In this report, in the first stage, we used a cost-effective pooled-sequencing strategy to sequence the entire HTR7 gene and its regulatory regions to investigate the association of common variants in HTR7 and clinical response to four selective serotonin reuptake inhibitors (SSRIs: citalopram, paroxetine, fluoxetine and sertraline) in a retrospective cohort mainly consisting of subjects with bipolar disorder (n = 359). We found 80 single-nucleotide polymorphisms (SNPs) with false discovery rate < 0.05 associated with response to paroxetine. Among the significant SNPs, rs7905446 (T/G), which is located at the promoter region, also showed nominal significance (P < 0.05) in fluoxetine group. GG/TG genotypes for rs7905446 and female gender were associated with better response to two SSRIs (paroxetine and fluoxetine). In the second stage, we replicated this association in two independent prospective samples of SSRI-treated patients with major depressive disorder: the MARS (n = 253, P = 0.0169) and GENDEP studies (n = 432, P = 0.008). The GG/TG genotypes were consistently associated with response in all three samples. Functional study of rs7905446 showed greater activity of the G allele in regulating expression of HTR7. The G allele displayed higher luciferase activity in two neuronal-related cell lines, and estrogen treatment decreased the activity of only the G allele. Electrophoretic mobility shift assay suggested that the G allele interacted with CCAAT/enhancer-binding protein beta transcription factor (TF), while the T allele did not show any interaction with any TFs. Our results provided novel pharmacogenomic evidence to support the role of HTR7 in association with antidepressant response

    Dynamical detection of a companion driving a spiral arm in a protoplanetary disk

    Full text link
    Radio and near-infrared observations have observed dozens of protoplanetary disks that host spiral arm features. Numerical simulations have shown that companions may excite spiral density waves in protoplanetary disks via companion-disk interaction. However, the lack of direct observational evidence for spiral-driving companions poses challenges to current theories of companion-disk interaction. Here we report multi-epoch observations of the binary system HD 100453 with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) facility at the Very Large Telescope. By recovering the spiral features via robustly removing starlight contamination, we measure spiral motion across 4 yr to perform dynamical motion analyses. The spiral pattern motion is consistent with the orbital motion of the eccentric companion. With this first observational evidence of a companion driving a spiral arm among protoplanetary disks, we directly and dynamically confirm the long-standing theory on the origin of spiral features in protoplanetary disks. With the pattern motion of companion-driven spirals being independent of companion mass, here we establish a feasible way of searching for hidden spiral-arm-driving planets that are beyond the detection of existing ground-based high-contrast imagers.Comment: Accepted for publication in Astronomy and Astrophysics; 12 pages, 9 figure

    Triangular clustering in document networks

    Get PDF
    Document networks are characteristic in that a document node, e.g. a webpage or an article, carries meaningful content. Properties of document networks are not only affected by topological connectivity between nodes, but also strongly influenced by the semantic relation between content of the nodes. We observe that document networks have a large number of triangles and a high value of clustering coefficient. And there is a strong correlation between the probability of formation of a triangle and the content similarity among the three nodes involved. We propose the degree-similarity product (DSP) model which well reproduces these properties. The model achieves this by using a preferential attachment mechanism which favours the linkage between nodes that are both popular and similar. This work is a step forward towards a better understanding of the structure and evolution of document networks.Comment: 10 pages, 3 figures, 2 table
    corecore