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Abstract

FKBP5 (FKBP51) is a glucocorticoid receptor (GR) binding protein, which acts 

as a co-chaperone of heat shock protein 90 (HSP90) and negatively regulates GR. 

Its association with mental disorders has been identified, but its function in disease 

development is largely unknown. Long-term potentiation (LTP) is a functional 

measurement of neuronal connection and communication, and is considered one of 

the major cellular mechanisms that underlies learning and memory, and is disrupted 

in many mental diseases. In this study, a reduction in LTP in Fkbp5 knockout (KO) 

mice was observed when compared to WT mice, which correlated with changes to 

the glutamatergic and GABAergic signaling pathways. The frequency of mEPSCs 

was decreased in KO hippocampus, indicating a decrease in excitatory synaptic 

activity. While no differences were found in levels of glutamate between KO and WT, 

a reduction was observed in the expression of excitatory glutamate receptors 

(NMDAR1, NMDAR2B and AMPAR), which initiate and maintain LTP. The 

expression of the inhibitory neurotransmitter GABA was found to be enhanced in 

Fkbp5 KO hippocampus. Further investigation suggested that increased expression 

of GAD65, but not GAD67, accounted for this increase. Additionally, a functional 

GABAergic alteration was observed in the form of increased mIPSC frequency in the 

KO hippocampus, indicating an increase in presynaptic GABA release. Our findings 

uncover a novel role for Fkbp5 in neuronal synaptic plasticity and highlight the value 

of Fkbp5 KO as a model for studying its role in neurological function and disease 

development.
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Introduction

FKBP5 (FK506-binding protein 51, also known as FKBP51) belongs to a 

subclass of immunophilin proteins and exhibits peptidyl-prolyl cis–trans isomerase 

(PPIase) activity crucial for protein folding (Schiene and Fischer 2000). It functions 

as a co-chaperone of heat shock protein 90 (HSP90) and forms a glucocorticoid 

receptor (GR) complex with additional components (Reynolds, Ruan et al. 1999, 

Westberry, Sadosky et al. 2006, Stechschulte and Sanchez 2011). Previous 

research revealed that FKBP5 is highly expressed in the hippocampus (Scharf, Liebl 

et al. 2011) and it appears to be essential for hypothalamic-pituitary-adrenal (HPA) 

axis function, including the physiological stress response that shapes 

neuroendocrine reactivity and coping behavior (Binder 2009, Costin, Wolen et al. 

2013). In humans, single nucleotide polymorphisms (SNPs) within the FKBP5 gene 

are associated with increased recurrence of depressive episodes and increased 

susceptibility to post-traumatic stress disorder (PTSD), bipolar disorder, major 

depressive disorder, and suicide attempts (Binder, Salyakina et al. 2004, Binder, 

Bradley et al. 2008, Lekman, Laje et al. 2008, Tatro, Everall et al. 2009, Willour, 

Chen et al. 2009, Costin, Wolen et al. 2013, Ellsworth, Moon et al. 2013, 

Szczepankiewicz, Leszczynska-Rodziewicz et al. 2014). FKBP5 has also been 

implicated in the development of addiction and PTSD-alcohol use disorder 

comorbidity (Xie, Kranzler et al. 2010, McClintick, Xuei et al. 2013, Levran, Peles et 

al. 2014), as well as alcohol consumption (Qiu, Luczak et al. 2016) and alcohol 

withdrawal severity (Huang, Schwandt et al. 2014). 
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The associations of FKBP5 with these conditions suggests a critical role in 

neuroadaptation following stress, alcohol, or other insults. Animal studies have 

revealed that Fkbp5 mRNA expression is increased in the hippocampus following the 

stress of chronic social defeat (Wagner, Marinescu et al. 2012) and increased in the 

paraventricular nucleus (PVN) and central amygdala (CeA) following restraint stress 

(Scharf, Liebl et al. 2011). Our studies have found that relative to WT mice, Fkbp5 

KO mice consume more alcohol and suffer more severe alcohol withdrawal as 

measured by handling-induced convulsions (HICs) following both acute and chronic 

alcohol exposure (Huang, Schwandt et al. 2014, Qiu, Luczak et al. 2016). The 

expression level of FKBP5 has been correlated with several mental illnesses (Ising, 

Depping et al. 2008, Lekman, Laje et al. 2008, Binder 2009, Levran, Peles et al. 

2014), and is responsive to stress, alcohol, and morphine (Treadwell and Singh 

2004, McClung, Nestler et al. 2005, Balsevich, Uribe et al. 2014). Even though 

elimination of Fkbp5 has been found to elicit some behavioral changes (Hartmann, 

Wagner et al. 2012), electrophysiological examination and molecular analyses are 

necessary to ascertain differences in neuronal function and neurotransmitter 

regulation, respectively. 

Long-term potentiation (LTP) is critical in learning and memory, and its 

dysfunction underlies many mental diseases. LTP is defined as an increase in 

postsynaptic responses lasting hours to days following a high-frequency activation of 

excitatory synapses (Bliss and Gardner-Medwin 1973, Bliss and Lomo 1973), and is 

thought to be the functional basis underlying memory formation (Bliss and 

Collingridge, 1993; Bliss et al., 2014). In addition to variations in LTP, differences in 

neurotransmitter activity, particularly the glutamatergic (Nakanishi 1994, Swanson, 

Bures et al. 2005, Gos, Gunther et al. 2009) and GABAergic (Saba, Bennett et al. 
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2011) systems require investigation to understand brain function. A variety of NMDA 

receptor subunits have been identified: the ubiquitously expressed NR1 subunit; a 

family of four distinct NR2 subunits (A, B, C, and D); and two NR3 subunits 

(Moriyoshi, Masu et al. 1991, Sugihara, Moriyoshi et al. 1992, Das, Sasaki et al. 

1998). All NMDARs appear to function as heteromeric assemblies composed of 

multiple NR subunits (Das, Sasaki et al. 1998). NMDAR1 is necessary for plasticity 

in the CA1 region (McHugh, Blum et al. 1996, Tsien, Huerta et al. 1996). Deletion of 

NR2B is associated with impairment of LTP in hippocampus (Li, Erzurumlu et al. 

1994, Kutsuwada, Sakimura et al. 1996), conversely, overexpression of NR2B 

enhances LTP and has been shown to enhance learning and memory (Tang, 

Shimizu et al. 1999). In addition, activation of the GABAergic system, particularly 

enhanced GABA release and GABA receptor trafficking, contributes to alcohol 

consumption (Enoch 2008, Saba, Bennett et al. 2011) and other mental illnesses 

(Sajdyk, Johnson et al. 2008, Luscher, Shen et al. 2011, Abdallah, Jackowski et al. 

2015). GABA synthesis may also play a key role in maintaining a high level of GABA 

activity. However, these signaling systems have not previously been studied in 

Fkpb5 KO mice, and little is known about the overall impact of Fkbp5 on synaptic 

output, which may be crucial for understanding its role in disease development.

In this study we have examined LTP function in Fkbp5 KO and WT mice, and 

measured alterations in the GABAergic and glutamatergic systems. The levels of 

Glutamate and GABA were measured, and NMDA receptor expression levels and 

GABA synthesis enzymes were quantified. Behavioral differences were also 

measured.

Materials and Methods

Animals
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All experimental protocols were reviewed and approved by the Animal Care 

and Research Advisory Committee in the Institute of Laboratory Animal Sciences, 

Chinese Academy of Medical Sciences, and the Indiana University School of 

Medicine. The animals were maintained in facilities fully accredited by the 

Association for the Assessment and Accreditation of Laboratory Animal Care 

(AAALAC). Development of Fkbp5 knockout (Fkbp5 KO) mice was described in a 

previous publication (Yong, Yang et al. 2007). Fkbp5 KO and WT littermates were 

bred through heterozygous mating and were back crossed to C57BL/6J inbred mice 

for at least 5 generations.

Brain slice preparation for electrophysiological measurement

Brain slices for electrophysiology were prepared from WT and KO male mice 

at 8 weeks of age as described previously (Hou et al., 2006). In brief, mice were 

deeply anaesthetized and brains were rapidly removed from the skull and transferred 

into ice-cooled artificial cerebrospinal fluid (ACSF) (in mM: 125 NaCl, 2.5 KCl, 1.25 

NaH2PO4, 25 NaHCO3, 10 D-Glucose, 2.5 CaCl2, and 1.5 MgCl2) and saturated with 

95 % O2 and 5 % CO2 at pH 7.3. Transverse slices of 400 μm thickness containing 

the hippocampus were cut with a Vibratome (Leica, VT 1000 S, Germany), which 

was filled with cold ACSF. The prepared slices were incubated in oxygenated ACSF 

at room temperature for at least 1 hour before being transferred to a recording 

chamber and bubbled with oxygenated ACSF at 32 ± 1 ºC.

Recording Long term synaptic plasticity response

Field excitatory postsynaptic potential (fEPSP) population responses were 

evoked by stimulation in the radiatum with a bipolar electrode placed on the CA3 

area using acute brain slices (two slices per animal) prepared from WT (N=3) and 
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KO (N=3) male mice at 8 weeks of age; a total of 6 recordings from each genotype. 

Extracellular recording electrodes were filled with 2 M NaCl and placed in the 

stratum radiatum of CA1. Data were digitized at 3 kHz using an Axopatch 700B 

amplifier and analyzed with Clampfit 10.5 software. Single test pulses at a 

stimulation intensity that elicited 40% of a maximal response of fEPSP slope were 

delivered as the baseline level. The slices were stimulated with single test pulses 

every 30 s for at least 30 min followed by Theta-burst stimulation (TBS) and 60 min 

of test stimulation without changing intensity. All TBS contained 10 bursts at 200 ms 

inter-stimulation intervals, in which one burst consisted of four pulses of 100 Hz, 

repeated 3 times with 10 s inter-stimulation intervals. The time course of changes in 

the fEPSP slope was calculated in relation to the signals obtained during the last 10 

min prior to TBS (100%), normalizing all responses to this baseline and then 

averaging across experiments. The degree of LTP was expressed as a percentage 

of the original control level. All changes in long-term synaptic plasticity were 

evaluated by averaging the 10 responses at 51-60 min post-TBS and comparing 

these data to the 10 control signals during the 10 min prior to TBS. All data are 

presented as means ± SEM. Student’s t-test was performed for statistical evaluation 

of the data.

Analysis of L-glutamic acid content in hippocampus using LC–MS/MS

Both sides of hippocampi (10 mg) from WT (n=3) and KO (n=3) were 

homogenized with 800 μL of 80% acetonitrile (containing 0.2% formic acid and 5 mM 

ammonium formate) and further extracted by ultrasonication for 5 min. After vortex 

and centrifugation at 13,225 g for 10 min at room temperature, the supernatants 

were collected for L-glutamic acid measurement. Aliquots of 5 μL were injected onto 

the LC-MS/MS system. Liquid chromatography was performed with the LC system (I-
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class Acquity ultra performance liquid chromatography, Waters) including an 

autosampler and ultra-high performance binary pump. MS/MS detection was 

performed on an API 4500 QTRAP mass spectrometer (Applied Biosystems/MDS 

SCIEX) equipped with a heated electrospray ionization (ESI) source operated in the 

positive ionization mode. Nitrogen was used as the nebulizer and desolvation gases. 

Typical operating parameters were set as follows: curtain gas (CUR) 10, collision 

gas (CAD) medium, temperature 300 °C, ion source gas 1 (GS1) 45, ion source gas 

2 (GS2) 50, and electrospray voltage 5500 V. The ion transitions were m/z 

148.1→84.0 for L-glutamic acid (collision energy = 21 V). The peak areas of different 

concentrations of L-glutamic acid (0.008 ng/mL-20 ng/mL, Sigma-Aldrich, Saint 

Louis, MO, USA) analyzed by QTRAP 4500 were collected to establish standard 

curves and further calculate the concentrations of each analyte in real samples.

Western blotting analysis

Hippocampi were harvested on ice in lysis buffer (Beyotime, Jiangsu, China) 

with 1:10 volume of protease inhibitor (S8800, Sigma-Aldrich, Saint Louis, MO, USA) 

and 1:100 volume of phosphatase inhibitor cocktail (P0044, Sigma-Aldrich, Saint 

Louis, MO, USA). After centrifugation, the supernatants were collected and protein 

concentrations were determined using a BCA kit (Beyotime, Jiangsu, China). The 

samples were mixed with loading buffer and denatured. Proteins (40 μg each lane) 

were separated by 10% sodium dodecyl sulfate (SDS)-polyacrylamide gels (Tanon 

equipment) and electrically transferred onto a nitrocellulose membrane (0.2 μm) (Pall 

Corporation, Ann Arbor, MI). Membranes were blocked prior to immunoblotting with 

primary antibodies at 4oC overnight. Blots were then incubated with HRP-conjugated 

secondary antibodies (1:5000, Santa Cruz, CA) and proteins were detected using 

ECL western blotting reagent kits. Signals were monitored by the Tanon 5500 
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Chemiluminescent Imaging System (Tanon, Shanghai, China) and quantified using 

TanonGis software (Tanon, Shanghai, China). Density values were normalized to 

GAPDH signal and provided as the mean ± SEM. Antibodies used in this study: anti-

AMPA (1:500), anti-NMDAR1 (1:500), anti-NMDAR2B (1:1000), anti-GAD65 (1:500), 

anti-GAD67 (1:500), and anti-GAT1 (1:1000) antibodies were purchased from 

Abcam (Cambridge, UK). HRP-conjugated anti-GAPDH (1:5000) was purchased 

from KangChen Bio-tech, Inc. (Shanghai, China).

Immunolabeling of brain slices

Immunohistochemical (IH) labeling of brain slices from male mice at 8 weeks of age 

of both WT (N =3) and KO (N = 3) were performed as previously described (Bin Qiu, 

2016). Anti-GABA (1:200) antibody was purchased from Abcam (Cambridge, UK). 

For immunofluorescence (IF), male mice at 8 weeks age of both WT (N =3) and KO 

(N = 3) genotypes were anesthetized with an i.p. injection of tribromoethanol (20 

mg/ml, 0.018 ml/g BW), and perfused transcardially with PBS (pH 7.4, 4oC) followed 

by 4% paraformaldehyde (pH 7.4, 4oC). The brains were isolated, embedded in 

OCT, and sectioned at 10 μm thickness using a cryostat microtome (Leica 

CM3050S, Germany). Slices were mounted on 3-aminopropyltriethoxysilane (APES) 

coated slides, blocked, and incubated with primary antibodies overnight at 4oC and 

secondary antibodies for 1h at 37oC. Nuclei were stained with DAPI mounting media 

(Zhongshan Goldenbridge Biotechnology, China). The fluorescence signal was 

captured using confocal laser scanning microscopy (Leica TCS LSI, Germany). The 

antibodies used in these experiments include rabbit anti-NMDAR1 (1:25), rabbit anti-

NMDAR2B (1:25), rabbit anti-AMPAR (1:25), rabbit anti-GABA, and Alexa Flour® 

488-conjugated goat anti-Rabbit IgG (1:500) from Abcam (Cambridge, UK). The 

optical density (AOD) of GABA was quantified by ImageJ.
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Recording of miniature excitatory postsynaptic currents

Miniature excitatory postsynaptic currents (mEPSCs) of CA1 pyramidal cells 

were recorded in whole cell mode using acute brain slices (two slices per animal) 

prepared from WT (N=4) and KO (N=4) male mice at 8 weeks of age as described 

above; a total of 8 recordings per genotype. The electrophysiological recordings 

were obtained under visual control by use of an Olympus microscope (Olympus 

BX50-WI, Olympus, Japan) and a 40x long-working distance objective (NA 0.8). 

Patch pipettes with 4-6 MΩ resistance were pulled from 110 mm long borosilicate 

glass capillaries (GB 150F-86-10, Sutter instrument, USA). The ion currents were 

recorded by an Axopatch 700B amplifier and pClamp10.6. Only cells that showed a 

high seal resistance (>1 GΩ) and a series resistance <25 MΩ were included. The 

series- and input-resistances were checked before and after the recordings in each 

experimental sequence. Cells were excluded if the input resistance or series 

resistance changed more than 15 % throughout the experiment. Signals were 

obtained at a holding potential of -70 mV. For pharmacological isolation of AMPA 

receptor-mediated mEPSCs, 1μM Tetradotoxin (TTX, the voltage-gated sodium 

channel blocker) and 100 μM picrotoxin (PTX, GABAA receptor antagonist) were 

added to the ACSF to abolish action potentials and inhibitory postsynaptic current 

events, respectively. The intracellular solution consisted of the following: (in mM) 140 

K-gluconate, 2 MgCl2, 8 KCl, 10 HEPES, 0.2 NaGTP, and 2 Na2ATP. The pH was 

adjusted to 7.3 with KOH. For each cell, at least 5 minutes of recording was 

obtained. For the detection of spontaneous events, the “threshold research” option 

was used and each event was checked. Data were analyzed off-line by using 

pClamp10.6 for event Frequency and Amplitude. Unpaired t-test was used for 
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statistical analysis. Results are presented as mean ± SEM, and significance was 

defined as p<0.05.

Recording of miniature inhibitory postsynaptic currents

Miniature inhibitory postsynaptic currents (mIPSCs) of CA1 pyramidal cells 

were recorded in whole cell mode using acute brain slices (two slices per animal) 

prepared from WT (N=4) and KO (N=4) male mice at 8 weeks of age as described 

above. The signal was obtained at a holding potential of -70 mV. For 

pharmacological isolation of GABAA receptor-mediated spontaneous inhibitory 

postsynaptic currents, 10nM glycine, 20 μM DNQX (AMPA receptor antagonist), 25 

μM D-AP-5 (NMDA receptor antagonist), and 0.5μM TTX were added to the ACSF. 

The intracellular solution consisted of the following: (in mM) 135 CsCl, 10 HEPES, 2 

MgCl2, 20 TEACl, and 10 EGTA. The pH was adjusted to 7.3 with CsOH with a 

pipette resistance of 4-5MΩ. The non-parametric Mann-Whitney U test was 

performed for mIPSC statistical analysis. Results are presented as mean ± SEM and 

p<0.05 was considered significant. Cumulative distribution plots of mIPSC 

amplitudes and inter-event intervals were compared using the Kolmogorov-Smirnov 

Goodness of Fit Test.

Saccharin and quinine consumption test and the forced swimming test (FST)

Saccharin and quinine intake was tested in adult male KO (N= 14) and WT (N= 21) 

mice. Animals were individually caged with free choice of water and 1.03% (W/V) 

saccharin. Fluid intake was recorded twice during the 1 week test (Pelz, Whitney et 

al. 1973). Forced swimming test was performed using 3-month-old male KO (N=12) 

and WT (N=12) mice. Animals were individually placed in a 2-Liter glass beaker filled 

with water (22 ± 1 °C) to a height of 15  cm, so that the mouse could neither touch the 
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bottom nor escape. The test lasted for 5 min and the time spent floating versus 

struggling was recorded. The ‘floating behavior’ (where the animal remains almost 

immobile and with its head above water) was used as a parameter to analyze 

behavioral differences.

Statistical analysis

Unless otherwise noted, all values are presented as mean ± standard error of 

the mean (SEM). Differences between two groups were compared by Student’s t-test 

with GraphPad Prism (GraphPad Software Inc., San Diego, CA). P values less than 

0.05 were considered to be significant.

Results

LTP is decreased in Fkbp5 KO hippocampus

Responses to drugs and stress often present with aberrations in LTP, which 

may indicate the activation of a common substrate, resulting in alterations of synaptic 

strength (Nestler 2001, Wolf 2003, Niehaus, Murali et al. 2010). To investigate 

whether elimination of the Fkbp5 gene produces dysfunctions in LTP, 

electrophysiological testing was carried out on brain slices of WT and Fkbp5 KO 

mice. Stimulation electrodes were placed in the CA3 region of the hippocampus, and 

recording electrodes were placed in CA1 (Figure 1A), producing a typical change in 

evoked responses following LTP. Field excitatory postsynaptic potentials (fEPSPs) 

were recorded in the hippocampi of both WT and KO mice (Figure 1B and 1C). 

Relative to WT, the fEPSP slope was significantly lower in KO following TBS 

stimulation (Figure 1D). The bar graphs summarize the differences in percentage of 

fEPSP slope before and after TBS (Figure 1E). The data indicate that KO mice 

display significant reductions in LTP.
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Decreased expression of glutamate receptors in Fkbp5 KO hippocampus

Classical synaptic LTP requires glutamate and NMDA receptor (NMDAR) 

activation, which drives increased AMPA receptor (AMPAR) expression in the 

postsynaptic membrane (Bashir, Bortolotto et al. 1993). NMDA receptor activation 

occurs when it binds with glutamate and glycine (or D-serine), allowing positively 

charged ions to flow through the cell membrane. To determine the source of the 

reduced LTP observed in KO, we first measured the glutamate level in the 

hippocampi of KO and WT mice. However, no differences of glutamate content, 

measured by L-glutamic acid, were observed (Figure 2A). Further analyses were 

conducted to determine whether the observed reductions in LTP are associated with 

alterations in excitatory glutamate receptors in Fkbp5 KO mice. Indeed, significant 

reductions in NMDAR1, NMDAR2B, and AMPAR protein expression in the 

hippocampus were identified in Fkbp5 KO mice via Western blot (Figure 2B-D). 

Concurrent results were evident in immunofluorescence (IF) labeling. The majority of 

neurons in the CA1 and DG sub-regions displayed an abundance of NMDAR1 

(Figure 2E), NMDAR2B (Figure 2F), and AMPAR (Figure 2G) expression in WT 

mice, while the expression of these proteins was considerably reduced in Fkbp5 KO 

mice (Figure 2E-G). These results suggest that the decreased LTP observed in 

Fkbp5 KO mice may be partially due to lower expression levels of excitatory 

glutamate receptors

Decreased frequency of mEPSCs in Fkbp5 KO mice

Given the lack of change in glutamate abundance coupled with decreased 

expression of glutamate receptors in Fkbp5 KO hippocampus, we next investigated 

the functional glutamatergic synapse alterations in KO hippocampus, particularly 
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those that might account for the observed attenuation of LTP. At a holding potential 

of -70 mV, AMPA receptor-mediated mEPSCs were monitored with the addition of 

pharmacological agents (1μM TTX, 100 μM PTX) (Figure 3A). Compared with WT 

mice, the mEPSC frequency was significantly lower in KO mice (WT: 2.31 ± 0.18 Hz; 

KO: 1.33 ± 0.15 Hz, p < 0.001, Unpaired t-test) (Figure 3B and 3C), but no 

differences were observed in mEPSC amplitude (WT: 18.89 ± 1.15 Hz; KO: 17.23 ± 

1.44 Hz, p= 0.3809, Unpaired t-test) (Figure 3D and 3E). A reduced mEPSC 

frequency is usually interpreted as a decrease in the presynaptic release probability, 

however this is not consistent with the similar glutamate content observed between 

the WT and KO. An alternative explanation for the lower mEPSC frequency 

observed in KO is a reduction in the number of functional synaptic sites, which is 

consistent with the decreased expression of glutamate receptors in KO. Moreover, 

the lack of difference in the amplitude of the mEPSCs between WT and KO indicates 

a lack of change in the activation of the postsynaptic glutamate receptors that are 

present. Taken together, the reduced LTP in KO is likely due to a decreased number 

of functional excitatory synaptic sites, but is not associated with a change in the 

activation of postsynaptic glutamate receptors.

Increased GABA level in Fkbp5 KO hippocampus

Normal central nervous system function requires maintaining a balance 

between neuronal excitation and inhibition. Because GABA is the major inhibitory 

transmitter in the CNS, we examined GABA in Fkbp5 KO mice via IHC labeling. An 

increase in GABA was detected in the KO hippocampus relative to WT (Figure 4A 

and 4B). The magnified CA1, CA2, CA3, and DG sub-regions also displayed these 

differences, which were quantified (Figures 4C). In line with the observed increase in 

KO hippocampal GABA level, KO mice exhibited an increase in the expression of 
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GAD65 (also known as glutamate decarboxylase 2), an enzyme that catalyzes the 

decarboxylation of glutamate to GABA (Figure 5A). In addition to GAD65, KO mice 

also appeared to possess a slightly higher expression of another enzyme, GAD67 

(also known as glutamate decarboxylase 1), although this difference did not reach 

statistical significance (Figure 5B). Likewise, no significant difference in GABA 

transporter GAT1 expression could be detected between KO and WT (Figure 5C). 

These results provide evidence in support of enhanced GABA production in the 

presynaptic terminal partially via increased GAD65 enzyme in Fkbp5 KO mice. 

Increased frequency of mIPSCs in Fkbp5 KO mice

Based on the observed increase in GABA level, we next investigated the 

functional GABAergic alterations present in KO hippocampus, to determine whether 

such alterations could account for the previously observed attenuation of LTP. 

Hippocampal slices obtained from animals at 8 weeks of age were assessed using 

whole cell recording techniques. At a holding potential of -70 mV, miniature IPSCs 

(mIPSCs) were detected as fast inward currents, which could be blocked by 

application of 10 μM bicuculline, a competitive GABAA receptor antagonist (Figure 

6A). This result indicated that the mIPSCs were mediated via GABAA receptor 

activation. Cumulative probability analysis revealed a significant reduction in mIPSC 

inter-event intervals, indicating an increased frequency of these signals in KO mice 

(11.5 ± 1.2 Hz) when compared to WT (8.2 ± 0.5 Hz, p<0.05, Kolmogorov-Smirnov 

(KS)) (Figure 6B and 6C). However, the amplitudes of the mIPSCs demonstrated no 

significant differences between the two groups (KO: 21.17 ± 1.35 pA; WT: 21.2 ±1.13 

pA, p= 0.99) (Figure 6D and 6E). The increased frequency of mIPSCs in Fkbp5 KO 

mice is consistent with increased GABAergic synaptic activity and could indicate a 

change in the probability of transmitter release. This is in agreement with the 
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observed increase in KO hippocampal GABA. The unchanged amplitude of mIPSCs 

suggests that postsynaptic function is apparently unaffected.

Fkbp5 KO male mice display behavior differences compared to WT mice

SNPs in the FKBP5 gene have been associated with PTSD, depression, 

anxiety, and bipolar disorder (Binder, Bradley et al. 2008, Willour, Chen et al. 2009, 

Tatro, Nguyen et al. 2010). Given these associations and the role of GABAergic 

signaling in these illnesses, it was important to examine behavioral differences 

between male WT and Fkbp5 KO mice. Depression-like behavior was assessed 

using an anhedonia test and the forced swim test (Porsolt, Le Pichon et al. 1977, 

Lucki 1997). When given free access to water and saccharin, KO male mice 

exhibited reduced total saccharin consumption via t-test ( p<0.01) (Figure 7A); and 

this difference was not due to differences in taste sense as measured by quinine 

intake (Figure 7B). These results indicate that Fkbp5 KO male mice display 

decreased anhedonic behavior. FST has been used to assess the effects of genetic 

modification on depressive behavior in animals (Porsolt et al., 1977) or the learned 

immobility to adapt successfully to the inescapable situation (Cryan and Mombereau, 

2004). Male KO mice spent significantly more time floating than WT by t-test (p = 

0.01) (Figure 7C).

Discussion

FKBP5 plays an important role in various mental illnesses, including PTSD, 

anxiety, depression, and addiction. It also has important effects on signaling 

pathways and neuron development. Its role in the homeostatic plasticity of the 

glutamatergic and GABAergic systems has not previously been explored. In the 

present study, we discovered that mice lacking Fkbp5 exhibit reduced LTP, 
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associated with decreased mEPSCs and increased GABAergic synaptic function in 

the hippocampus. Saccharin consumption and FST behaviors were found to be 

impacted in the KO male mice. Our findings uncover a role for Fkbp5 in neuronal 

synaptic plasticity and highlight the value of Fkbp5 KO as a model for studying 

neurological disease. 

It has been established that the induction of LTP in the CA1 area of the 

hippocampus requires glutamate and the activation of NMDA receptors located in 

the cell membrane of the postsynaptic neuron. NMDA influx triggers an increase in 

calcium entry, leading to activation of postsynaptic molecular pathways, and 

increased postsynaptic AMPAR density, which is responsible for a persistent 

increase in the postsynaptic response (Bliss & Collingridge, 1993). In this study, a 

reduction of LTP was observed in Fkbp5 KO mice, suggesting altered neural function 

in the Fkbp5 KO hippocampus. As no differences in glutamate abundance were 

observed between WT and KO, and a reduction in the expressions of excitatory 

receptors (NMDAR1, NMDAR2B, and AMPAR) were found in KO, we conclude that 

the synthesis of glutamate is not altered in the ablation of Fkbp5 , and that the 

reduced LTP may be partially due to reductions of NMDAR1 and NMDAR2B levels in 

the postsynaptic membrane. Western blotting and immunofluorescence data 

indicated that Fkbp5 KO affects the molecular expression of these receptors in 

hippocampus (Fig. 2), resulting in altered neuronal activity. In addition to NMDA 

receptors, AMPA receptors on the postsynaptic membrane are required to drive LTP 

(Isaac, Nicoll et al. 1995, Liao, Hessler et al. 1995). Consistent with our 

observations, the reduction of AMPAR in Fkbp5 KO may also contribute to reduced 

LTP. Moreover, a significant decrease in mEPSC frequency was observed in KO 
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mice. Reduced mEPSC frequency indicates either a decrease in the presynaptic 

release probability or a decreased number of functional synaptic sites. 

GABAergic activity also plays a fundamental role in the induction of LTP 

(Wigstrom and Gustafsson 1983). Previous research has demonstrated that 

increasing doses of the GABA-enhancing diazepam (Riss, Cloyd et al. 2008) inhibits 

LTP, indicating that GABAergic activity exerts a powerful influence over LTP 

(Levkovitz, Avignone et al. 1999). In the current study, increased GABA was 

observed in Fkbp5 KO hippocampus, potentially due to increased GABA synthesis. 

GABA is primarily synthesized from glutamate by GAD67 and GAD65, which are 

expressed in different amounts in cell bodies and axon terminals (Erlander, 

Tillakaratne et al. 1991). GAD67 immunoreactivity is expressed throughout the cell 

body and in synaptic terminals (Kaufman, Houser et al. 1991), and is a rapidly 

synthesized and utilized form of GAD, allowing on-site synthesis in response to 

cellular stimulation (Esclapez, Tillakaratne et al. 1994). In contrast, GAD65 is 

localized exclusively in the terminals and is reversibly bound to the membrane of 

synaptic vesicles, which may represent a depot of GAD that can be recruited upon 

intense stimulation (Kaufman, Houser et al. 1991, Soghomonian and Martin 1998), 

and plays a specific role in the control of synaptic GABA release (Pinal and Tobin 

1998). Indeed, we observed a significant increase in GAD65 expression and a 

slightly elevated level of GAD67 expression in KO hippocampus, which may account 

for the higher level of GABA observed in KO mice. The lack of a significant 

difference in GABA transporter (GAT1) expression suggests that reuptake of GABA 

is unaffected. The expression of GAD in brain regions of patients suffering from 

major depressive disorder (MDD) has been investigated previously, with mixed 

findings in the pre-frontal cortex (PFC), temporal cortex, and thalamus (Bielau, 
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Steiner et al. 2007, Gos, Steiner et al. 2012), but some consistent observations of 

increased density of GAD-IR cells in the entorhinal cortex and the hippocampus 

(Cheetham, Crompton et al. 1988, Gos, Gunther et al. 2009, Gos, Steiner et al. 

2012). In this regard, our results are consistent with human studies in the 

hippocampus. There are considerable data linking altered GABAergic activity with 

HPA axis function, in which Fkbp5 plays an important role as a GR regulator. Fkbp5 

is highly expressed in brain regions associated with stress response, and responds 

to stress itself (Scharf, Liebl et al. 2011, Qiu, Luczak et al. 2016). Similarly GAD 

mRNA expression is enhanced in several hypothalamic regions, such as the 

dorsomedial hypothalamus, medial preoptic area, and BST (Bowers, Cullinan et al. 

1998), following both acute and chronic stress exposure. GR is expressed in the 

GABAergic neurons of the anterior hypothalamic area and mediates corticosteroid-

induced plasticity (Shin, Han et al. 2011). Therefore it is presently unclear whether 

Fkbp5 affects GAD and GABA directly or indirectly (e.g., via GR). In GAD65 KO 

mice, reductions in synaptic GABA release are attributable to fewer vesicles being 

released (Tian et al. 1999). Thus, increased GABA may result from enhanced 

expression of GAD65 in Fkbp5 KO. This would be consistent with the high frequency 

of mIPSCs, indicating an increase in presynaptic GABA release. The lack of an 

effect on mIPSC amplitude in Fkbp5 KO suggests that postsynaptic function is 

essentially unaffected. Reductions in LTP can be mediated by an increase in 

presynaptic GABAergic interneurons, due to the increased frequency of mIPSCs 

(Levkovitz, Avignone et al. 1999). Thus, decreased glutamate receptors and 

increased GABA may account for the decreased LTP observed in Fkbp5 KO.

GABAergic transmission in the brain has been implicated in the 

pathophysiology of depressive disorder (Abdallah, Jackowski et al. 2015). GABA 

http://jn.physiology.org/content/86/2/596#ref-39
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exerts its major function through the GABA type A receptors (GABAARs), which 

inhibit the hyperarousal state and anxiety. Reductions in LTP might be the causal 

link between FKBP5 SNPs and many mental illnesses (Szymanska, Budziszewska 

et al. 2009, Tatro, Nguyen et al. 2010, Schmidt, Buell et al. 2015). Previous studies 

found decreased GABA concentrations in brain regions, such as dorsolateral PFC 

and occipital cortex (OCC) of patients with MDD (Rajkowska, O'Dwyer et al. 2007, 

Sanacora and Saricicek 2007, Maciag, Hughes et al. 2010). Recent findings demand 

more brain region-specific and a more complex models are needed to study this 

issue (Pehrson and Sanchez 2015). The limitations of human studies make it difficult 

to evaluate the brain region-specific expression of neurotransmitters and related 

enzymes, and argue for more animal model research to delineate the regional 

molecular mechanisms.

In the current study, both anhedonic behavior and FST were found to be 

impacted in the male KO mice at baseline. Previous research determined that 

although young Fkbp5 KO (10-16 week old) mice do not display general behavioral 

changes at baseline, they spend significantly less time immobile following restraint 

stress (Touma, Gassen et al. 2011), a behavior also observed in aged Fkbp5 KO 

(17-20 month old) mice with no stress (O'Leary, Dharia et al. 2011). However, we 

observed a genotype effect, with unstressed 3-month-old male KO mice spending an 

increased amount of time floating. This difference could be due to the stress 

treatment utilized. Although the predominant interpretation of FST is that immobility 

reflects hopelessness and negative mood (Porsolt et al., 1977), other interpretations 

are that this may only reflect the acute effect of antidepressants (Mann 2005), or the 

learned immobility to adapt successfully to the inescapable situation (Cryan and 

Mombereau, 2004). Our interpretation is that the FST difference may indicate a 
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difference in cognitive function (Molendijk and de Kloet 2015). More research is 

needed to understand Fkbp5 gene function and its effect on learning and memory.

Previous research has demonstrated that GABA and GABAR agonism 

enhances immobility, indicating that GABAergic functions play some role in the 

mechanism of this immobility (Nagatani, Sugihara et al. 1984, Nagatani, Yamamoto 

et al. 1987, Aley and Kulkarni 1989, Ferre, Fernandez Teruel et al. 1994). More 

recent research found increasing central GABAergic activity using various drugs 

results in a depressant-like activity, measured as an increase in the duration of 

immobility in the FST model of depression (El Zahaf and Salem Elhwuegi 2014). 

These observations are in line with those of Fkbp5 KO, with higher GABA and 

enhanced immobility. One limitation of the present study is not having directly tested 

the manipulation of GABAergic or glutamatergic systems to identify their association 

with behavior changes. The use of only male mice in the present study represents 

another limitation, as comparisons between the sexes may have enriched our 

understanding.

We conclude that FKBP5 plays a critical role in neuronal synaptic plasticity on 

both excitatory and inhibitory synapses in the hippocampus. Further research into 

how the elimination of Fkbp5 alters neuron development, gene expression, and 

behavior will provide insights into future treatment strategies for mental illness.
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13 Figure legends

14 Figure 1. Fkbp5 KO mice exhibit decreased LTP. 

15 (A) The anatomical placement of electrodes in the mouse hippocampus for LTP 

16 measurement. (B) The LTP (blue) responses of WT mice. (C) The LTP (red) 

17 responses of KO mice. (D) The time course of changes in fEPSP slope during LTP 

18 measurement. (E) The calculated changes and statistical analysis in fEPSP slope 

19 during LTP measurement. All changes in long-term synaptic plasticity were 

20 evaluated by averaging 10 responses at 51-60 minutes post- theta-burst stimulation 

21 (TBS) and normalizing these data to 10 control signals at 11-20 minutes prior to 

22 TBS. Comparisons were made using WT (N=3) and KO (N=3) male mice at 8 weeks 

23 of age ; a total of 6 recordings from each genotype. Student’s t-test was applied 

24 statistical significant analysis: **represents p < 0.01. 

25

26 Figure 2. Fkbp5 KO mice possess reduced glutamate receptor expression in 

27 the hippocampus.

28 (A) The content of L-glutamic acid in hippocampus detected using LC–MS/MS by 

29 comparing KO (N=3) and WT (N=3) male mice. (B, C, and D) The expression of 

30 NMDAR1, NMDAR2B, and AMPAR in WT and Fkbp5 KO mouse hippocampus were 

31 determined by Western blotting. Data are provided as the mean ± SEM. 

32 Comparisons were made by Student’s t-test: *represents p < 0.05; **represents p < 

33 0.01; NS represents no statistical significance. (E, F, and G) The localization and 

34 expression of NMDAR1, NMDAR2B, and AMPAR in CA1 and DG sub-regions from 

35 WT and KO hippocampus were detected by immunofluorescence. The images within 

36 the white rectangles show an enlarged view of the boxed regions. Bar = 100 μm.

37
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38 Figure 3. Decreased frequency of mEPSCs in Fkbp5 KO mice.

39 (A) Representative signals of AMPA receptor mediated mEPSC recorded at a 

40 holding potential of -70 mV. (B) Cumulative probability plots of the mEPSC intervals 

41 reveal a shift to the right in the KO curve. (C) The frequency of mEPSCs significantly 

42 decreased in KO (N=4) compared to WT (N=4). (D) The cumulative plots of the 

43 mEPSC amplitude reveal no differences between the two groups. (E) No significant 

44 differences could be detected between the mEPSC amplitudes of the two groups. 

45 Comparisons were made by Student’s t-test: *** represents p < 0.001; NS represents 

46 no statistical significance. 

47

48 Figure 4. Fkbp5 KO mice possess increased GABA level in hippocampus.

49 (A) The protein expression of GABA in hippocampus of WT (N=3) and (B) KO (N=3) 

50 mice demonstrated by IHC. (C) Comparison of GABA at representative sub-regions 

51 of the hippocampus demonstrate a higher level of GABA in the CA1, CA2, CA3, 

52 DG1, DG2, and DG3 sub-regions in KO relative to WT. The statistic analysis of the 

53 average optical density (AOD) of GABA level that was quantified by ImageJ, and the 

54 results were showed as fold change relative to WT. Data are provided as the mean ± 

55 SEM. Comparisons were made by Student’s t-test: *, **, and *** represent p < 0.05, 

56 p < 0.01 and p < 0.001.

57

58 Figure 5. GABA transporter expression in the brain

59 (A) The expression of GAD65, (B) GAD67, and (C) GAT1 in the hippocampus from 

60 WT (N=3) and KO (N=3) mice determined by Western blotting. Comparisons were 

61 made by Student’s t-test: * represents p<0.05,

62
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63 Figure 6. Increased frequency of mIPSCs in Fkbp5 KO mice.

64 (A) Representative mIPSC signals recorded at a holding potential of -70 mV in the 

65 presence of 0.5 μM TTX, 20μM CNQX, and 25μM D-AP5 (two top traces). 

66 Application of 10 μM bicuculline blocks all mIPSCs (two bottom traces) indicating 

67 that mIPSCs are mediated by activity from GABAA receptors. (B) Cumulative 

68 probability plots of the mIPSC intervals reveal a shift to the left in the KO curve. (C) 

69 The frequency of mIPSCs was significantly higher in KO (N=4) compared to WT 

70 (N=4). (D) The cumulative plots of the mIPSC amplitude reveal no differences 

71 between the two groups. (E) No significant differences could be detected between 

72 the mIPSC amplitudes of the two groups. Comparisons were made by Student’s t-

73 test: *represents p < 0.05; NS represents no statistical significance. 

74

75 Figure 7. Fkbp5 KO mice display anhedonic behavior. 

76 (A) Compared to WT male mice (N=21), Fkbp5 KO mice (N=14) exhibited a 

77 significant reduction in saccharin intake. (B) No significant differences in quinine 

78 intake were observed between Fkbp5 KO and WT male mice. (C). Male Fkbp5 KO 

79 mice (N=12) exhibited increased floating time in FST relative to WT (N=12). 

80 Comparisons were made by Student’s t-test: * and ** represent p < 0.05 and p < 

81 0.01, respectively.

82
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