37 research outputs found

    The rotational profiles of cluster galaxies

    Get PDF
    © 2019 The Author(s) We compile two samples of cluster galaxies with complimentary hydrodynamic and N-body analysis using FLASH code to ascertain how their differing populations drive their rotational profiles and to better understand their dynamical histories.We select our main cluster sample from the X-ray Galaxy Clusters Database (BAX), which are populated with Sloan Digital Sky Survey (SDSS) galaxies. The BAX clusters are tested for the presence of substructures, acting as proxies for core mergers, culminating in sub-samples of eight merging and 25 non-merging galaxy clusters. An additional sample of 12 galaxy clusters with known dumbbell components is procured using galaxy data from the NASA/IPAC Extragalactic Database (NED) to compare against more extreme environments. BAX clusters of each sample are stacked on to a common RA-Dec. space to produce rotational profiles within the range of 0.0-2.5 r200. Merging stacks possess stronger core rotation at ≲0.5r200 primarily contributed by a red galaxy sub-population from relaxing core mergers; this is alongside high rotational velocities from blue galaxy sub-populations, until they mix and homogenize with the red sub-populations at ∼r200, indicative of an infalling blue galaxy sub-population with interactive mixing between both sub-populations at ≿ r200. FLASH code is utilized to simulate the merger phase between two originally independent clusters and test the evolution of their rotational profiles. Comparisons with the dumbbell clusters leads to the inference that the peculiar core rotations of some dumbbell clusters are the result of the linear motions of core galaxies relaxing on to the potential during post second infall

    Crystallization of citrate-stabilized amorphous calcium phosphate to nanocrystalline apatite : a surface-mediated transformation

    Get PDF
    This work explores the mechanisms underlying the crystallization of citrate-functionalized amorphous calcium phosphate (cit-ACP) in two relevant media, combining in situand ex situ characterization techniques. Results demonstrate that citrate desorption from cit-ACP triggers the surface-mediated transformation to nanocrystalline apatite (Ap). Our findings shed light on the key role of citrate, an important component of bone organic matrix, and the medium composition in controlling the rate of transformation and the morphology of the resulting Ap phase

    Mussel-Inspired Self-Healing Coatings Based on Polydopamine-Coated Nanocontainers for Corrosion Protection

    Get PDF
    The mussel-inspired properties of dopamine have attracted immense scientific interest for surface modification of nanoparticles due to the high potential of dopamine functional groups to increase the adhesion of nanoparticles to flat surfaces. Here, we report for the first time a novel type of inhibitor-loaded nanocontainer using polydopamine (PDA) as a pH-sensitive gatekeeper for mesoporous silica nanoparticles (MSNs). The encapsulated inhibitor (benzotriazole) was loaded into MSNs at neutral pH, demonstrating fast release in an acidic environment. The self-healing effect of water-borne alkyd coatings doped with nanocontainers was achieved by both on-demand release of benzotriazole during the corrosion process and formation of the complexes between the dopamine functional groups and iron oxides, thus providing dual self-healing protection for the mild steel substrate. The coatings were characterized by electrochemical impedance spectroscopy, visual observations, and confocal Raman microscopy. In all cases, the coatings with embedded benzotriazole-loaded MSNs with PDA-decorated outer surfaces demonstrated superior self-healing effects on the damaged areas. We anticipate that dopamine-based multifunctional gatekeepers can find application potential not only in intelligent self-healing anticorrosive coatings but also in drug delivery, antimicrobial protection, and other fields

    A study of the formation of fuzzy tungsten in a HiPIMS plasma system

    Get PDF
    Abstract Nanostructured “fuzzy” tungsten has been grown for the first time in a high-power impulse magnetron sputtering HiPIMS system. The fuzzy layers were formed over range of surface temperatures Ts, from 1025 to 1150 K, for helium ion fluences of 5.02 × 1024 m-2, and mean ion bombardment energy of 55 eV. The time-evolution of the helium ion flux (ΓHe) and incident energy (EHe) were determined during the HiPIMS pulse (of width of 150 µs) using a planar Langmuir probe. The micrographic findings revealed that, the thickness of HiPIMS-grown nano-tendrill layers increased by 83 % (from 274 to 501 nm) for only a 125 K rise in Ts. This result is explained by the fact that higher surface temperatures led to larger helium bubbles which ultimately produce a thicker nanostructured layer. The growth rate of fuzzy tungsten layers in HiPIMS conditions is approximately 50 % lower than those observed for DC magnetron operation.</jats:p

    Pulse Burst Generation and Diffraction with Spatial Light Modulators for Dynamic Ultrafast Laser Materials Processing.

    Get PDF
    A pulse burst optical system has been developed, able to alter an energetic, ultrafast 10 ps, 5 kHz output pulse train to 323 MHz intra-burst frequency at the fundamental 5 kHz repetition rate. An optical delay line consisting of a beam-splitting polariser cube, mirrors, and waveplates transforms a high-energy pulse into a pulse burst, circulating around the delay line. Interestingly, the reflected first pulse and subsequent pulses from the delay line have orthogonal linear polarisations. This fact allows independent modulation of these pulses using two-phase-only Spatial Light Modulators (SLM) when their directors are also aligned orthogonally. With hybrid Computer Generated Holograms (CGH) addressed to the SLMs, we demonstrate simultaneous multi-spot periodic surface micro-structuring on stainless steel with orthogonal linear polarisations and cylindrical vector (CV) beams with Radial and Azimuthal polarisations. Burst processing produces a major change in resulting surface texture due to plasma absorption on the nanosecond time scale; hence the ablation rates on stainless steel with pulse bursts are always lower than 5 kHz processing. By synchronising the scan motion and CGH application, we show simultaneous independent multi-beam real-time processing with pulse bursts having orthogonal linear polarisations. This novel technique extends the flexibility of parallel beam surface micro-structuring with adaptive optics

    Nanoscale Thin Films of Niobium Oxide on Platinum Surfaces: Creating a Platform for Optimizing Material Composition and Electrochemical Stability

    Get PDF
    A nanoscale thin film of niobium oxide on a platinum substrate was evaluated for its influence on the electronic and chemical properties of the underlying platinum towards the oxygen reduction reaction with applications to proton exchange membrane fuel cells. The nanoscale thin film of niobium oxide was deposited using atomic layer deposition onto the platinum substrate. A film of niobium oxide is a chemically stable and electronically insulating material that can be used to prevent corrosion and electrochemical degradation when layers are several nanometers thick. These layers can be insulating if sufficiently thick and may not be sufficient to protect the platinum from corrosion if too thin. An ∼3 nm thin film of niobium oxide was fabricated on the platinum surface to determine its influence on the electronic and chemical properties at the interface of these materials. The atomic layer deposition process enabled a precise control over the material composition, structure, and layer thickness. The niobium oxide film was evaluated using cyclic voltammetry and electrochemical impedance spectroscopy to evaluate whether a balance could be found between the inhibition of platinum degradation and electronic insulation of the platinum for use in proton exchange membrane fuel cells. The 3 nm thin niobium oxide film was found to be sufficiently thin to permit electronic conductivity while reducing the incidence of platinum dissolution

    Multi-spot ultrafast laser ablation at ambient pressure – A new window on coalescing shock wave interactions

    Get PDF
    During ultrafast laser ablation at ambient pressure, redeposition of nano-particulates occurs through backwards flux towards the end of the ablation process and is often viewed as undesirable. Here, on the contrary, we report on unique, highly symmetric redeposition patterns observed during ultrafast laser ablation of metals with closely spaced multi-spots in ambient gases. Spot symmetries were altered with a Spatial Light Modulator or beam splitting optics. At low fluence (relative to material ablation threshold), debris is highly confined within the spot patterns, while at higher fluence, jets of debris emanate along axes of symmetry reaching distances far exceeding the spot separations. These phenomena appear universal but depend on the spot proximity, substrate, ambient gas density and pulse energy. The jets, formed at the collision planes between plasma plumes, consist of agglomerated nanoparticle debris, lifted and accelerated by colliding supersonic Mach shocks whose early interactions are imprinted on the debris fields. Numerical simulation using computational fluid dynamics (CFD) of multi-spot ablation in ambient gas supports this view of the phenomena. These observations are relevant to an improved understanding of coalescing shock waves, induced air flows and re-deposition at ambient pressure

    Nanostructure of Mouse Otoconia

    Get PDF
    Mammalian otoconia of the inner ear vestibular apparatus are calcium carbonate-containing mineralized structures critical in maintaining balance and detecting linear acceleration. The mineral phase of otoconia is calcite, which coherently diffracts X-rays much like a single-crystal. Otoconia contain osteopontin (OPN), a mineral-binding protein influencing mineralization processes in bones, teeth and avian eggshells, for example, and in pathologic mineral deposits. Here we describe mineral nanostructure and the distribution of OPN in mouse otoconia. Scanning electron microscopy and atomic force microscopy of intact and cleaved mouse otoconia revealed an internal nanostructure (∼50 nm). Transmission electron microscopy and electron tomography of focused ion beam-prepared sections of otoconia confirmed this mineral nanostructure, and identified even smaller (∼10 nm) nanograin dimensions. X-ray diffraction of mature otoconia (8-day-old mice) showed crystallite size in a similar range (73 nm and smaller). Raman and X-ray absorption spectroscopy – both methods being sensitive to the detection of crystalline and amorphous forms in the sample – showed no evidence of amorphous calcium carbonate in these mature otoconia. Scanning and transmission electron microscopy combined with colloidal-gold immunolabeling for OPN revealed that this protein was located at the surface of the otoconia, correlating with a site where surface nanostructure was observed. OPN addition to calcite growing in vitro produced similar surface nanostructure. Finally, these findings provide details on the composition and nanostructure of mammalian otoconia, and suggest that while OPN may influence surface rounding and surface nanostructure in otoconia, other incorporated proteins (also possibly including OPN) likely participate in creating internal nanostructure

    Contact Transfer of Engineered Nanomaterials in the Workplace

    Get PDF
    This study investigates the potential spread of cadmium selenide quantum dots in laboratory environments through contact of gloves with simulated dry spills on laboratory countertops. Secondary transfer of quantum dots from the contaminated gloves to other substrates was initiated by contact of the gloves with different materials found in the laboratory. Transfer of quantum dots to these substrates was qualitatively evaluated by inspection under ultraviolet illumination. This secondary contact resulted in the delivery of quantum dots to all the evaluated substrates. The amount of quantum dots transferred was quantified by elemental analysis. The residue containing quantum dots picked up by the glove was transferred to at least seven additional sections of the pristine substrate through a series of sequential contacts. These results demonstrate the potential for contact transfer as a pathway for spreading nanomaterials throughout the workplace, and that 7-day-old dried spills are susceptible to the propagation of nanomaterials by contact transfer. As research and commercialization of engineered nanomaterials increase worldwide, it is necessary to establish safe practices to protect workers from the potential for chronic exposure to potentially hazardous materials. Similar experimental procedures to those described herein can be adopted by industries or regulatory agencies to guide the development of their nanomaterial safety programmes

    Covalent Organic Framework Nanosheets Embedding Single Cobalt Sites for Photocatalytic Reduction of Carbon Dioxide

    Get PDF
    Covalent organic framework nanosheets (CONs), fabricated from twodimensional covalent organic frameworks (COFs), present a promising strategy for incorporating atomically distributed catalytic metal centers into well-defined pore structures with desirable chemical environments. Here, a series of CONs was synthesized by embedding single cobalt sites that were then evaluated for photocatalytic carbon dioxide reduction. A partially fluorinated, cobalt-loaded CON produced 10.1 μmol carbon monoxide with a selectivity of 76%, over 6 hours irradiation under visible light (TON = 28.1), and a high external quantum efficiency (EQE) of 6.6% under 420 nm irradiation in the presence of an iridium dye. The CONs appear to act as a semiconducting support, facilitating charge carrier transfer between the dye and the cobalt centers, and this results in a performance comparable with that of the state-of-the-art heterogeneous catalysts in the literature under similar conditions. The ultrathin CONs outperformed their bulk counterparts in all cases, suggesting a general strategy to enhance the photocatalytic activities of COF materials
    corecore