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ABSTRACT: Mussel-inspired properties of dopamine have attracted immense scientific 

interest for surface modification of nanoparticles due to the high potential of dopamine 

functional groups to increase adhesion of nanoparticles to flat surfaces. Here, we report for the 
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first time a novel type of inhibitor-loaded nanocontainers using polydopamine (PDA) as a pH-

sensitive gatekeeper for mesoporous silica nanoparticles (MSNs). The encapsulated inhibitor 

(benzotriazole) was loaded into MSNs at neutral pH, demonstrating fast release in acidic 

environment. Self-healing effect of water-borne alkyd coatings doped with nanocontainers was 

achieved by both on-demand release of benzotriazole during the corrosion process and 

formation of the complexes between the dopamine functional groups and iron oxides thus 

providing dual self-healing protection for the mild steel substrate. The coatings were 

characterized by Electrochemical Impedance spectroscopy, visual observations and confocal 

Raman microscopy. In all cases, the coatings with embedded benzotriazole-loaded MSNs with 

PDA-decorated outer surface demonstrated superior self-healing effect on the damaged areas. 

We anticipate that dopamine-based multifunctional gatekeepers can find application potential 

not only in intelligent self-healing anticorrosive coatings but also in drug delivery, 

antimicrobial protection and other fields. 

INTRODUCTION 

Corrosion mostly affects the petroleum, cement and concrete manufacturing industries, metal 

processing, water treatment, chemical processing and power generation equipment. In recent 

years there has been a considerable increase in the global anticorrosion coatings’ market. 

According to a 2018 report from Bcc Research (https://www.bccresearch.com/) it should reach 

$31.0 billion by 2022, up from $23.3 billion in 2017. According to the technical classification, 

the market for anticorrosion coatings can be divided into solvent-borne, water-borne, powder-

based, self-healing and other paint formulations. Water-borne coatings gained a significant 

increase of the market share over the past decades owing to strong regulations related to volatile 

organic compound (VOC) emissions from solvent-borne coatings. Addition of self-healing 

components will attain to the water-borne coatings the internal capability to repair corrosion 
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damage by themselves (autonomic) or with the help of outside triggers such as light, heat or 

mechanic pressure, which is highly desirable for novel coating products.1-3 

Usually, self-healing coating is impregnated with nanocontainers or microcapsules, which 

encapsulate inhibitors or healing agents.4-5 Mesoporous silica nanoparticles (MSNs) are ideal 

nanocontainers because both their size and pore volume are easily controlled to optimize 

inhibitor encapsulation process.6-9 However, the application of MSNs as delivery tools in self-

healing coatings is limited by spontaneous leakage of small molecular inhibitors from 

mesopores.8 Bioinspired nanovalves prepared from metal precipitates and supramolecular 

materials have been proven to be applicable gatekeeper for the nanocontainers.10-15 Besides the 

high cost, the major drawback of these nanovalves is their single function, which only serves 

as the pH-controlled release gatekeeper. It would be important for MSNs’ gatekeeper to have 

additional functionality of the pH-controlled release effect. To the best of our knowledge, 

multifunctional gatekeepers for controlled release have been scarcely reported up to now in 

literature.16  

Inspired by the adhesive nature of catechols and amines in mussel adhesive proteins, 

polydopamine (PDA) is one of the most versatile approaches for functionalizing almost all 

nanomaterial surfaces.17-18 The coating with PDA can be formed in the alkaline pH solution 

without any external stimuli such as light or heat, and its uniformity depends on the PDA 

diffusion and surface reactivity. Recently, the PDA coated MSNs have been shown as pH-

sensitive release system for drug delivery.19-20 It is noteworthy that the unreacted catechol 

groups after the oxidative polymerization of dopamine could leave abundant hydroxyl groups 

on the surface of MSNs, which endow the decorated nanocontainers increased wettability. This 

property is crucial for nanocontainers dispersed in water-borne coatings. Moreover, catechol 

groups have another outstanding function for self-healing coatings. It is reported that the 

cracked polymer networks can be reconnected by catechol-Fe3+ coordinate bonds.21 Another 
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paper reported that the cation-π interaction modulated by salt is a key mechanism in the mussel 

adhesion process.22 All these findings aroused our great interest to apply PDA as the pH-release 

gatekeeper for the inhibitor loaded MSNs. Although many researchers have directly applied 

PDA into the coatings or on the metal surfaces for corrosion protection,23-31 there is no 

evidences of using PDA as a gatekeeper in smart mesoporous nanocontainers. Besides the pH 

release control property, we want to explore other PDA functionalities for the anticorrosion 

self-healing coatings.  

In this study, we designed a mussel-inspired self-healing coating by application of MCM-48 

MSNs as nanocontainers for benzotriazole (BTA), a well-known inhibitor of steel corrosion.32-

35 MCM-48 was chosen because of its branched internal 3D mesostructure.36-38 It was used as 

nanoreservoirs for biocides in our previous work.39 The next step was functionalization of 

BTA-loaded MSNs with PDA layer. Hence, we report here a novel design of PDA-decorated 

MSNs nanocontainers for self-healing coatings. We believe that our work will stimulate other 

researchers to explore more multifunctional gatekeepers for self-healing and other applications. 

 

EXPERIMENTAL METHODS 

Materials. 

Tetraethyl orthosilicate (TEOS, 98%), hexadecyltrimethylammonium bromide (CTAB, 99%), 

triblock copolymer F127 (Pluronic F127), ammonium hydroxide (32%), ethanol (99.8%), 1H-

benzotriazole, hydrochloride dopamine and tris (hydroxymethyl) aminomethane (Tris) were 

purchased from Sigma-Aldrich, UK. The investigated mild steel was supplied by Metal Store, 

UK. 

Synthesis of MSNs. 

MSNs were synthesized according to the method reported by Kim et al.36 CTAB (0.5 g) and 

Pluronic F127 (2.05 g) were dissolved in a mixture of deionized water (96 mL) and pure ethanol 
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(43 mL), and ammonium hydroxide (11 mL of 32 wt% solution) was then added to the solution. 

The solution was stirred for 40 min at 600 rpm to dissolve the solid completely. On the next 

step, TEOS (1.8 g) was added into the mixture at once. After stirring at 1000 rpm for 24 h at 

room temperature, the resulting solid was recovered by filtration, washed twice with ethanol, 

twice with distilled water and dried in air under ambient conditions. The organic template was 

removed by calcination in a muffle furnace at 550 °C for 6 h after heating up with a ramp of 1 

°C/min. 

BTA loading and PDA modification. 

Before loading, the MSNs were dried at 120 °C under vacuum to remove water and air from 

the mesoporous structure. Then, 10 mg of MSNs were directly dispersed in the solution of BTA 

in ethanol (10 wt%, 10 mL). The mixed solution was placed in desiccator and evacuated using 

a vacuum pump at room temperature so BTA could be uploaded into the mesopores of the 

MSNs. The vacuum cycle was repeated thrice to obtain the maximum loading of inhibitor (21 

wt.%). The as-loaded MSMs (MSNs-BTA) were separated by centrifugation and dried for 24 

h at 323 K. The loading capacity of the BTA is about 30 wt% confirmed by thermogravimetric 

analysis of the MSNs-BTA, which has not been shown in this paper. It is worth mentioning 

that any post-treatment of the MSNs-BTA in water will lead to leakage of the loaded BTA. 

Washing of these nanocontainers with ethanol will lead to even faster leakage of BTA due to 

its high solubility in organic solvents. Ultrasonic dispersion of the MSNs-BTA will cause 

complete release of the inhibitor within only 1 min. To deposit a PDA layer on the surface of 

the loaded nanocontainers, MSNs-BTA (30 mg) was dispersed in 30 mL Tris-HCl buffer (pH 

8.5) solution saturated with BTA. Then, 60 mg of hydrochloride dopamine was immediately 

added. The mixture was stirred for 12 h in the dark. The resulted PDA coated MSNs-BTA 

(MSNs-BTA@PDA) nanocontainers were separated by centrifugation (12000 rpm, 20 min) 

and washed with water to remove the unpolymerized dopamine.  
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Coating. 

The water-based alkyd paint was purchased from Crown Trade, UK. MSNs-BTA@PDA (2 

wt%) was added to the alkyd emulsion and mechanically stirred by a homogenizer. Paints 

without MSNs (blank coating), with 2 wt% MSNs and 2 wt% MSNs-BTA were prepared for 

comparison. The coatings were deposited on the mild steel plates using a paint applicator (RK 

Paint Applicator, UK) and dried at room temperature for 48 h. The wet film thickness of all 

studied coatings was controlled at 60 μm by paint applicator. The dry thickness of the coating 

is 5 ± 0.5 μm measured by profilometer (AMBios XP-200). 

Characterization. 

The morphology, size and pore structure of the MSNs were characterized by scanning electron 

microscopy (SEM, JEOL 7001F), X-ray powder diffraction (XRD, Bruker D8 Venture), 

nitrogen adsorption isotherms (BET, Quantachrome Instruments) and transmission electron 

microscopy (TEM, JEOL 2100FCs). The chemical structure of MSNs, MSNs-BTA and MSNs-

BTA@PDA was determined through attenuated total reflection Fourier-transform infrared 

spectra (ATR-FTIR, Bruker TENSOR II, UK) in the wavenumber range from 4000 to 400 cm-

1. UV-vis spectroscopy (Evolution 201 UV-visible spectrophotometer, Thermo Scientific, UK) 

was applied to characterize the release profile of BTA. The characterization method was used 

according to our previous research.10 To avoid the influence of the PDA, absorbance of BTA 

at 258 nm was plotted against time. Electrochemical impedance spectroscopy (EIS, Ivium 

CompactStat, Netherlands) measurements were used to record the corrosion behaviour of the 

self-healing coating. Mild steel substrates (3cm × 6cm × 0.3cm) with coatings were placed into 

special cells as shown in supporting information (4 cm2 of the sample area exposed to the 0.1 

M NaCl electrolyte). The electrolyte was fixed in a glass tube by an O-ring. The electrolyte 

inside the glass tube was renewed every 24 hours. The platinum sheet was used as the auxiliary 

electrode, and Ag/AgCl electrode was used as the reference electrode. Both intact and scratch 
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samples were tested. Scratches were made with a circular-edge scalpel by a home-made 

machine. The scratch area is 10 mm long, 200 μm wide, and 80 μm deep. Open circuit potential 

was measured for 30 min following EIS measurements with the frequency from 105 Hz to 10-

2 Hz using AC signal amplitude of 10 mV. All electrochemical tests were performed three times 

to guarantee their repeatability and average values with error bars are demonstrated in 

experimental results. EIS data were fitted to equivalent cell diagrams using the IviumSoft 

program. The corrosion products formed on the mild steel substrates were characterized by 

Raman spectra (LabRam Xplora confocal Raman microscope, Horiba Jobin Yvon, France). 

After 20 days of immersion, the coating was removed the by knife. After the removal, the 

substrate was washed with acetone several times to completely remove coating residues. 

 

RESULTS AND DISCUSSION 

Characterization of MSNs, MSNs-BTA, and MSNs-BTA@PDA. 

 

Figure 1. SEM image (a), XRD (b),  N2 sorption isotherm (c), and pore size distribution (d) of MSNs. 
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Fig. 1 (a) shows the SEM image of MSN. All particles exhibit spherical shape with size range 

between 90 nm and 170 nm. Fig. 1 (b) demonstrates the XRD pattern of MSNs. Five peaks 

were observed on the XRD pattern, which correspond to the planes (211), (220), (420), (332) 

and (431) of MCM-48.35 The N2 adsorption-desorption behaviour and pore size distribution 

calculated from nonlocal density functional theory (NLDFT) method40 are shown in Fig. 1 (c, 

d). A narrow pore size distribution with average size of 3.5 nm can be observed in Fig. 1 (d).  

 

Figure 2. TEM image of MSNs (a) and MSNs-BTA@PDA (b). Arrow indicates PDA layer. 

 

TEM analysis was performed in order to observe the nanoparticle inner structure before and 

after encapsulation. It can be seen from Fig. 2 (a) that the well-ordered pores are extending 

over the whole structure of MSNs. After the encapsulation and PDA surface decoration, the 

diameter of MSNs-BTA@PDA is ~10 % bigger than that of initial MSNs (Fig. 2 (b)). A rough 

PDA layer can be clearly seen from the surface of MSNs-BTA@PDA.  



 

 9

 

Figure 3. ATR-FTIR spectra of MSNs (black), MSNs-BTA (red), and MSNs-BTA@PDA (green). 

 

Figure 3 shows the ATR-FTIR spectra of MSNs, MSNs-BTA, and MSNs-BTA@PDA 

samples. The absorption peaks at 465 cm-1, 800 cm-1, and 1080 cm-1 correspond to Si-O-Si 

bending vibration, Si-O-Si symmetric stretching, and Si-O asymmetric vibration, respectively. 

All these peaks are characteristic for SiO2.39 There is an absorption peak at 742 cm-1 for MSNs-

BTA, which represents the C-H in plane bending vibrations of BTA benzene ring.41 

Furthermore, the peaks at 1435 and 1490 cm-1 on MSNs-BTA@PDA samples could be 

assigned to the skeletal vibration of aromatic double bonds, which indicates the presence of 

PDA.42 
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Figure 4. Release profile of BTA from the MSNs-BTA and MSNs-BTA@PDA nanocontainers at different pH 
values. 

 

The release profiles of BTA from MSNs-BTA and MSNs-BTA@PDA nanocontainers are 

demonstrated in Figure 4. Fast release can be observed from the MSNs-BTA nanocontainers 

even at pH 7 (black line). Without polydopamine layer, nearly 60% of encapsulated BTA was 

released from the mesoporous nanocontainers within first 100 min. When we embedded these 

nanocontainers into the anticorrosion coatings, the BTA would start to leak from the first 

minute of immersion into paint formulation. It leads a large amount of inhibitor lost during the 

coating application and curing. In the case of MSNs-BTA@PDA, BTA release was suppressed 

by PDA at pH 7 (red line) as seen in Figure 4. At the same time, changing the pH value to 

acidic region results in of BTA release rate: 30 % of BTA at pH 5 and 50 % of BTA at pH 2 

were released from the nanocontainers in first 100 min of exposure, respectively. At neutral 

pH, the PDA coating anchors functional ligands on the surface of MSNs via physical bonds 

(hydrogen bond or van der Waal’s force) or chemical bonds (Michael addition or Schiff base 

reaction).18 At low pH, the catechol groups of PDA, the inhibitor molecules, and the silica 

particles have the same charge, which leads to electrostatic repulsion forces inside the 
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nanocontainers. The PDA coatings were partially peeled off from the surface of MSNs in the 

acidic media.19-20 Therefore, more BTA was released from the channels of the MSNs at low 

pH. Corrosion activity, which leads to local changes of pH, will trigger the release of BTA 

from MSNs-BTA@PDA nanocontainers. 

Characterization of self-healing coatings. 

 

Figure 5. Ultramicrotomed SEM images of coating with MSNs (a) and MSNs-BTA@PDA (b). 

 

Ultramicrotomed SEM analysis of coatings with nanocontainers was performed to study the 

dispersion of the nanocontainers inside the coating. It should be noted that the samples used 

for cross section observation were coated on the glass plate. So their thicknesses were different 

from the samples used for corrosion tests. Large amount of aggregated MSNs was observed in 

Fig. 5 (a), which indicates the poor dispersity of pure MSNs in the alkyd coating matrix. In 

contrast, homogeneous distribution of MSNs-BTA@PDA can be observed from Fig. 5 (b). It 

could be effect of –OH groups of PDA reacting with coating matrix thus enhancing 

nanocontainer dispersion in coatings. In addition, no bubbles or cracks can be seen in Fig. 5 

(b), which indicates intact structure of the coating. 
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Figure 6. Bode plots of the scratched coatings during 20 days of immersion in 0.1 M NaCl: blank coating (a1, 
b1), coating with MSNs (a2, b2), with MSNs-BTA (a3, b3), and with MSNs-BTA@PDA (a4, b4). 
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Figure 7. Impedance modulus |Z| measured at 0.01 Hz during immersion in 0.1 M NaCl for blank coating (1), 
coating with MSNs (2), with MSNs-BTA (3), and with MSNs-BTA@PDA (4). 

 

Table 1. Values of important electrochemical parameters: the fitting model delivers a good fit quality (χ2 < 
0.01); all fitting were performed as a result of three parallel EIS experiments. 

coatings time 

(day) 

Rs 

(Ω cm2) 

CPEc 

(µF cm-2) 

n 

-- 

Rc 

(kΩ cm2) 

CPEdl 

(µF cm-2) 

n 

-- 

Rct 

(kΩ cm2) 

blank 1 23 0.16 0.90 7.39 22.90 0.83 36.59 

5 26 0.35 0.97 4.36 150.60 0.83 20.01 

10 40 0.87 0.94 3.95 246.30 0.88 19.63 

20 38 1.19 0.96 3.02 350.90 0.79 14.63 

 with MSN 1 8 0.10 0.97 34.85 6.88 0.83 43.82 

5 14 0.12 0.94 30.82 26.68 0.88 31.58 

10 16 0.14 0.90 27.99 28.15 0.85 23.40 

20 23 0.79 0.90 12.53 30.71 0.89 20.61 

with MSN-BTA 1 37 0.02 0.84 54.96 0.04 0.88 187.60 

5 19 0.33 0.83 43.87 0.75 0.86 57.63 

10 21 0.93 0.95 22.21 2.68 0.79 11.77 

20 38 1.84 0.87 10.35 10.89 0.95 10.95 

with MSN-BTA@PDA 1 22 0.07 0.91 51.97 5.42 0.91 23.63 

5 11 0.03 0.98 170.70 2.08 0.89 31.46 

10 24 0.04 0.94 182.50 0.04 0.96 250.80 

20 18 0.04 0.99 196.80 0.03 0.98 374.10 

 

Artificial defects with 0.2 × 10 mm2 size were made on the coatings in order to induce the 

corrosion process. EIS measurements were carried out to evaluate their self-healing 
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performance in 0.1 M NaCl. The impedance value of the coating with empty MSNs is a little 

higher than that of the blank coating. The Bode plots obtained from blank coating and coating 

with MSNs are quite similar (Fig. 6 (a1, a2)), which illustrates that the MSNs entrapped in the 

coating serves only as nanocontainers for corrosion inhibitor. With the increase of immersion 

time, the corrosive species gradually penetrate into the scratch of the coatings, resulting in the 

steady decrease of impedance modulus of blank coating and coating with empty MSNs (Fig. 6 

(b1, b2)). Fig. 6 (a3) exhibits a highest impedance modulus (1.0×106 Ω cm2) after 1 day 

immersion for the coating doped with MSNs-BTA. The fast release of the inhibitor could 

suppress the development of corrosion just after immersion of the sample. However, the |Z| 

shows a sharp drop from 1.0×106 Ω cm2 to 2.4×105 Ω cm2 after 5 days of immersion. The 

release profile (Fig. 4) proves that the leakage of BTA from the MSNs-BTA could happen in 

neutral solution. The BTA could directly release in the whole testing area. The direct doping 

of the coating with corrosion inhibitor could affect the adhesion between steel and coating or 

perform negative influence to the coating matrix,8 which decrease corrosion protection of the 

coating. In the case of the coating with MSNs-BTA@PDA, the |Z| remains lower as compared 

with coating with MSNs and MSNs-BTA after 1 day immersion. It is probably due to the 

remaining hydroxyl group on the surface of MSNs-BTA@PDA, which can promote water 

penetration into the coating. However, the coating with MSNs-BTA@PDA shows a stable 

resistance increase on a long term from 8.3×104 Ω cm2 to 7.0×105 Ω cm2 during 20 immersion 

days (Fig. 6 (a4)). Such a self-healing action was not observed for other investigated coatings. 

The on-demand release of BTA from the nanocontainers provides durable protection of the 

scratched area. Fig. 7 shows the electrochemical impedance data at 0.01 Hz during 20 days 

immersion, which reflects the overall corrosion resistance of coatings. 
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Figure 8. Electrical equivalent circuit used to fit the impedance data: Rs is solution resistance, Rc is coating 
resistance, CPEc is constant phase element of coating capacitance, Rct is charge transfer resistance, CPEdl  stands 
for constant phase element of double layer capacitance, Rw and CPEw were used to describe the mass transport . 

Electrical equivalent circuit shown in Fig. 8 was used to analyze the impedance data. The model 

circuit demonstrated an excellent fitting quality as shown in Fig. 6. The obtained fitting 

parameters for the coating response are depicted in Table 1. The value of CPEdl (double layer 

capacitance) for coatings with MSNs-BTA@PDA is lower than for other coatings, which 

reflects a good adhesion of the coating to the metal.  

 

 
Figure 9. Images of blank coating (a), coatings with MSNs (b), MSNs-BTA (c), and MSNs-BTA@PDA (d) after 
20 days of immersion in 0.1 M NaCl solution. 

 

Figure 9 shows the optical images of coatings after 20 days of immersion in 0.1 M NaCl 

solution. Massive corrosion products are observed in the scratched area of the coatings in Fig. 

9 (a, b) for blank coating and coating with MSNs, which indicates their poor corrosion 

resistance. Lower amount of rust is found on the image of coating with MSNs-BTA (Fig. 9(c)). 

However, a large area of coating was delaminated from the metal substrate showing weak 

adhesion between coating and substrate. This is in accordance with the impedance results, 
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which suggests that the fast release of BTA decreases the adhesion between coating and steel 

substrate. In the case of coating with MSNs-BTA@PDA (Fig. 9 (d)), no corrosion products 

and no delamination were found in the whole immersion area. Salt spray tests were taken to 

achieve a better knowledge of the failure process. Images of mild steel and mild steel coated 

with all kinds of coatings before and after 288 h of salt spray tests are shown in Figure 10. 

More detailed salt spray test images at different time periods are shown in Figure S2. Better 

performances were obtained for the mild steel coated with alkyd paint with MSNs-BTA@PDA, 

which proves their self-healing functionality and better barrier properties. Although all the 

coatings failed after 288 h salt spray test, the mild steel coated with alkyd paint with MSNs-

BTA@PDA shows less rust on the surface than other samples. The coating with MSNs started 

to blister and bubble after 24 h while the coating with MSNs-BTA@PDA started to blister and 

bubble after 72 h (see Figure S2). These results confirm the improved anti-corrosion properties 

of coating with MSNs-BTA@PDA nanocontainers.  

 

Figure 10. Images of mild steel (a), blank coating (b), coatings with MSNs (c), MSNs-BTA (d), and MSNs-
BTA@PDA (e) before and after 288 h of salt spray test. 
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Figure 11. Blank coating (a) and coating with MSNs-BTA@PDA nanocontainers (b) images taken by confocal 
Raman microscope after 20 days of immersion in 0.1 M NaCl; (c) Raman spectra of (1) mild steel before 
immersion, (2) mild steel after removal of the blank coating or coating with MSNs-BTA@PDA (3) after 20 days 
of immersion. 

Figure 11 (a, b) shows confocal Raman the images of coatings after immersion for 20 days in 

0.1 M NaCl. These images were taken by Raman microscope in order to observe the rust and 

complex more clearly. Rust (yellow colour) could be found in the unscratched area of blank 

coating (Fig. 11 (a)). Fig. 11 (b) shows some dark complexes inside the micropores of the 

coating with MSNs-BTA@PDA nanocontainers. To eliminate the signal interference of the 

coating matrix, the Raman spectra were performed directly on the mild steel substrate after 

careful removal of the coatings. No obvious peak can be seen from the blank sample (line 1 in 

Fig. 11 (c)), which indicates that no rust or oxide were formed on the surface of mild steel 

before immersion. Three peaks are observed at 532, 654, and 1300 cm-1 for the steel coated 

with blank coating after immersion (line 2 in Fig. 11 (c)), which are assigned to γ-FeOOH and 

α-Fe2O3.43 The Raman spectrum of mild steel (line 3 in Fig. 11 (c)) beneath the self-healing 

coatings with MSNs-BTA@PDA is different from blank sample. Raman peaks between 470 

and 670 cm-1 are chelate peaks between Fe3+ and PDA catechol group.44-45 The other peaks at 
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812, 1272, 1330, 1483 and 1566 cm-1 are characteristic Raman vibrations of dopamine.46 

Raman spectra confirm the existence of complexes between steel substrate and PDA.  

CONCLUSIONS 

 
Figure 12. The self-healing mechism of the mussel-inspired coatings. In scratched area, the released BTA creates 
a protective film on the surface of mild steel. The detached dopamine also forms coordination complexes, which 
provide additional protective effect for the mild steel. 

In this paper, we designed a novel pH-sensitive inhibitor release system by using the 

polydopamine (PDA) as the gatekeeper for mesoporous silica nanocontainers (MSNs) of 90-

170 nm size loaded with corrosion inhibitor benzotriazole (BTA). TEM and ATR-FTIR results 

confirmed the presence of PDA layer on the surface of nanoparticles. Release profiles under 

different pH confirm the pH responsive kinetics of MSNs-BTA@PDA nanocontainers. The 

encapsulated inhibitor was trapped inside the MSNs in neutral pH while rapidly released in 

acidic environment. We embedded MSNs-BTA@PDA nanocontainers into a water-based 

alkyd coating and painted it on the surface of mild steel (Figure 12). Stable increase of the 

impedance modulus at 0.01 Hz for coatings with 2 wt% of incorporated MSN-BTA@PDA 

during 20 days of immersion in 0.1 M NaCl solution demonstrated high corrosion resistance 

and self-healing effect. Raman spectra confirmed the existence of complexes between steel 

substrate and PDA component of MSNs-BTA@PDA nanocontainers. PDA makes complex 

with corrosion products in the micropores of water-borne coatings as shown in Fig. 12. PDA 
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layer not only controls the release of inhibitor but also serves as a chelate agent to form 

protective complexes with corrosion products. Furthermore, the outer surface of MSN-

BTA@PDA is functionalized with -OH groups from PDA for better dispersion in water-borne 

coatings. We hope that our work will inspire other researchers working in the field of corrosion 

protection to explore multifunctional properties of dopamine as a gatekeeper for other types of 

core-shell nanocontainers. 
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