651 research outputs found

    K600 Small Angle Operation

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Derivation of Del180 from sediment core log data\u27 Implications for millennial-scale climate change in the Labrador Sea

    Get PDF
    Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface water δ18O records of Neogloboquadrina pachyderma (left coiled); hence the surface water δ18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 years). For the Labrador Sea, sediment core logs contain important information about deepwater current velocities and also reflect the variable input of ice-rafted debris from different sources as inferred from grain-size analysis, the relation of density and P wave velocity, and magnetic susceptibility. For the last glacial, faster deepwater currents, which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted from several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deepwater currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly thereafter, while the abrupt atmospheric temperature rise happened after a larger time lag of ≥ 1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial timescales but decoupling at orbital timescales

    Spin- and angle-resolved spectroscopy of S2p photoionization in the hydrogen sulfide molecule.

    Get PDF
    Angle- and spin-resolved photoelectron spectroscopy with circularly and linearly polarized synchrotron radiation were used to study the electronic structure of the hydrogen sulfide molecule. A strong effect of the molecular environment appears in the spin-resolved measurements and, although less clearly, in the angular distribution of the sulfur 2p photoelectrons. The anisotropy and spin parameters of the three main spectral components have been obtained. The validity of simple atomic models in explaining the results is discussed

    Probing the molecular environment using spin-resolved photoelectron spectroscopy.

    No full text
    Angle- and spin-resolved photoelectron spectroscopy with linearly and circularly polarized synchrotron radiation were used to study the electronic structure of model triatomic molecules, hydrogen sulfide, and carbonyl sulfide. The spin-polarization measurements of the molecular field split components of the S 2p photolines revealed a strong effect of the different molecular environments. The validity of simple atomic models to explain the results is discussed

    Efficient Passive ICS Device Discovery and Identification by MAC Address Correlation

    Full text link
    Owing to a growing number of attacks, the assessment of Industrial Control Systems (ICSs) has gained in importance. An integral part of an assessment is the creation of a detailed inventory of all connected devices, enabling vulnerability evaluations. For this purpose, scans of networks are crucial. Active scanning, which generates irregular traffic, is a method to get an overview of connected and active devices. Since such additional traffic may lead to an unexpected behavior of devices, active scanning methods should be avoided in critical infrastructure networks. In such cases, passive network monitoring offers an alternative, which is often used in conjunction with complex deep-packet inspection techniques. There are very few publications on lightweight passive scanning methodologies for industrial networks. In this paper, we propose a lightweight passive network monitoring technique using an efficient Media Access Control (MAC) address-based identification of industrial devices. Based on an incomplete set of known MAC address to device associations, the presented method can guess correct device and vendor information. Proving the feasibility of the method, an implementation is also introduced and evaluated regarding its efficiency. The feasibility of predicting a specific device/vendor combination is demonstrated by having similar devices in the database. In our ICS testbed, we reached a host discovery rate of 100% at an identification rate of more than 66%, outperforming the results of existing tools.Comment: http://dx.doi.org/10.14236/ewic/ICS2018.

    MK-0448, a Specific Kv1.5 Inhibitor: Safety, Pharmacokinetics and Pharmacodynamic Electrophysiology in Experimental Animal Models and in Humans.

    Get PDF
    BACKGROUND: -We evaluated the viability of I(Kur) as a target for maintenance of sinus rhythm in patients with a history of atrial fibrillation through the testing of MK-0448, a novel I(Kur) inhibitor. METHODS AND RESULTS: -In vitro MK-0448 studies demonstrated strong inhibition of I(Kur) with minimal off-target activity. In vivo MK-0448 studies in normal anesthetized dogs demonstrated significant prolongation of the atrial refractory period compared with vehicle controls without affecting the ventricular refractory period. In studies of a conscious dog heart failure model, sustained AF was terminated with bolus intravenous MK-0448 doses of 0.03 and 0.1 mg/kg. These data led to a two-part first-in-human study: Part I evaluated safety and pharmacokinetics, and Part II was an invasive electrophysiologic (EP) study in healthy subjects. MK-0448 was well-tolerated with mild adverse experiences, most commonly irritation at the injection site. During the EP study, ascending doses of MK-0448 were administered, but no increases in atrial or ventricular refractoriness were detected despite achieving plasma concentrations in excess of 2 μM. Follow-up studies in normal anesthetized dogs designed to assess the influence of autonomic tone demonstrated that prolongation of atrial refractoriness with MK-0448 was markedly attenuated in the presence of vagal nerve simulation, suggesting that the effects of I(Kur) blockade on atrial repolarization may be negated by enhanced parasympathetic neural tone. CONCLUSIONS: -The contribution of I(Kur) to human atrial electrophysiology is less prominent than in preclinical models and therefore is likely to be of limited therapeutic value for the prevention of atrial fibrillation

    Cell arrest and cell death in mammalian preimplantation development

    Get PDF
    The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development

    Analysis of Blood Stem Cell Activity and Cystatin Gene Expression in a Mouse Model Presenting a Chromosomal Deletion Encompassing Csta and Stfa2l1

    Get PDF
    The cystatin protein superfamily is characterized by the presence of conserved sequences that display cysteine protease inhibitory activity (e.g., towards cathepsins). Type 1 and 2 cystatins are encoded by 25 genes of which 23 are grouped in 2 clusters localized on mouse chromosomes 16 and 2. The expression and essential roles of most of these genes in mouse development and hematopoiesis remain poorly characterized. In this study, we describe a set of quantitative real-time PCR assays and a global expression profile of cystatin genes in normal mouse tissues. Benefiting from our collection of DelES embryonic stem cell clones harboring large chromosomal deletions (to be reported elsewhere), we selected a clone in which a 95-kb region of chromosome 16 is missing (Del16qB3Δ/+). In this particular clone, 2 cystatin genes, namely Csta and Stfa2l1 are absent along with 2 other genes (Fam162a, Ccdc58) and associated intergenic regions. From this line, we established a new homozygous mutant mouse model (Del16qB3Δ/16qB3Δ) to assess the in vivo biological functions of the 2 deleted cystatins. Stfa2l1 gene expression is high in wild-type fetal liver, bone marrow, and spleen, while Csta is ubiquitously expressed. Homozygous Del16qB3Δ/16qB3Δ animals are phenotypically normal, fertile, and not overtly susceptible to spontaneous or irradiation-induced tumor formation. The hematopoietic stem and progenitor cell activity in these mutant mice are also normal. Interestingly, quantitative real-time PCR expression profiling reveals a marked increase in the expression levels of Stfa2l1/Csta phylogenetically-related genes (Stfa1, Stfa2, and Stfa3) in Del16qB3Δ/16qB3Δ hematopoietic tissues, suggesting that these candidate genes might be contributing to compensatory mechanisms. Overall, this study presents an optimized approach to globally monitor cystatin gene expression as well as a new mouse model deficient in Stfa2l1/Csta genes, expanding the available tools to dissect cystatin roles under normal and pathological conditions

    Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes

    Get PDF
    Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion
    • …
    corecore