35 research outputs found

    N-terminal acetylation shields proteins from degradation and promotes age-dependent motility and longevity

    Get PDF
    Most eukaryotic proteins are N-terminally acetylated, but the functional impact on a global scale has remained obscure. Using genome-wide CRISPR knockout screens in human cells, we reveal a strong genetic dependency between a major N-terminal acetyltransferase and specific ubiquitin ligases. Biochemical analyses uncover that both the ubiquitin ligase complex UBR4-KCMF1 and the acetyltransferase NatC recognize proteins bearing an unacetylated N-terminal methionine followed by a hydrophobic residue. NatC KO-induced protein degradation and phenotypes are reversed by UBR knockdown, demonstrating the central cellular role of this interplay. We reveal that loss of Drosophila NatC is associated with male sterility, reduced longevity, and age-dependent loss of motility due to developmental muscle defects. Remarkably, muscle-specific overexpression of UbcE2M, one of the proteins targeted for NatC KO-mediated degradation, suppresses defects of NatC deletion. In conclusion, NatC-mediated N-terminal acetylation acts as a protective mechanism against protein degradation, which is relevant for increased longevity and motility. The most common protein modification in eukaryotes is N-terminal acetylation, but its functional impact has remained enigmatic. Here, the authors find that a key role for N-terminal acetylation is shielding proteins from ubiquitin ligase-mediated degradation, mediating motility and longevity.Association Francaise contre les Myopathies 261981, Canadian Institutes of Health Research (CIHR) 249843, United States Department of Health & Human Services National Institutes of Health (NIH) - USA F-12540, Portuguese national funding through Fundaco para a Ciencia e a Tecnologia (FCT) 171752-PR-2009-0222, National Funds through Fundaco para a Ciencia e a Tecnologia (FCT) G008018N, G002721N, University of Bergen MC_UU_00028/6, FDN-143264, FDN-143265, PJT-180285, PJT-463531, R01HG005853, R01HG005084, DL 57/2016/CP1361/CT0019, 2022.01782.PTDC,PTDC/BIA-BID/28441/2017,PTDC/BIA-BID/1606/2020, ALG-01-0145-FEDER-028441, PPBI-POCI-01-0145-FEDER-022122, LISBOA-01-0145-FEDER-022170info:eu-repo/semantics/publishedVersio

    Dimensionality reduction methods for extracting functional networks from large‐scale CRISPR screens

    No full text
    Abstract CRISPR‐Cas9 screens facilitate the discovery of gene functional relationships and phenotype‐specific dependencies. The Cancer Dependency Map (DepMap) is the largest compendium of whole‐genome CRISPR screens aimed at identifying cancer‐specific genetic dependencies across human cell lines. A mitochondria‐associated bias has been previously reported to mask signals for genes involved in other functions, and thus, methods for normalizing this dominant signal to improve co‐essentiality networks are of interest. In this study, we explore three unsupervised dimensionality reduction methods—autoencoders, robust, and classical principal component analyses (PCA)—for normalizing the DepMap to improve functional networks extracted from these data. We propose a novel “onion” normalization technique to combine several normalized data layers into a single network. Benchmarking analyses reveal that robust PCA combined with onion normalization outperforms existing methods for normalizing the DepMap. Our work demonstrates the value of removing low‐dimensional signals from the DepMap before constructing functional gene networks and provides generalizable dimensionality reduction‐based normalization tools

    RNF4 and USP7 cooperate in ubiquitin-regulated steps of DNA replication

    No full text
    DNA replication requires precise regulation achieved through post-translational modifications, including ubiquitination and SUMOylation. These modifications are linked by the SUMO-targeted E3 ubiquitin ligases (STUbLs). Ring finger protein 4 (RNF4), one of only two mammalian STUbLs, participates in double-strand break repair and resolving DNA–protein cross-links. However, its role in DNA replication has been poorly understood. Using CRISPR/Cas9 genetic screens, we discovered an unexpected dependency of RNF4 mutants on ubiquitin specific peptidase 7 (USP7) for survival in TP53-null retinal pigment epithelial cells. TP53−/–/RNF4−/–/USP7−/– triple knockout (TKO) cells displayed defects in DNA replication that cause genomic instability. These defects were exacerbated by the proteasome inhibitor bortezomib, which limited the nuclear ubiquitin pool. A shortage of free ubiquitin suppressed the ataxia telangiectasia and Rad3-related (ATR)-mediated checkpoint response, leading to increased cell death. In conclusion, RNF4 and USP7 work cooperatively to sustain a functional level of nuclear ubiquitin to maintain the integrity of the genome

    Mitoferrin2 is a synthetic lethal target for chromosome 8p deleted cancers

    No full text
    Abstract Background Somatic copy number alterations are a hallmark of cancer that offer unique opportunities for therapeutic exploitation. Here, we focused on the identification of specific vulnerabilities for tumors harboring chromosome 8p deletions. Methods We developed and applied an integrative analysis of The Cancer Genome Atlas (TCGA), the Cancer Dependency Map (DepMap), and the Cancer Cell Line Encyclopedia to identify chromosome 8p-specific vulnerabilities. We employ orthogonal gene targeting strategies, both in vitro and in vivo, including short hairpin RNA-mediated gene knockdown and CRISPR/Cas9-mediated gene knockout to validate vulnerabilities. Results We identified SLC25A28 (also known as MFRN2), as a specific vulnerability for tumors harboring chromosome 8p deletions. We demonstrate that vulnerability towards MFRN2 loss is dictated by the expression of its paralog, SLC25A37 (also known as MFRN1), which resides on chromosome 8p. In line with their function as mitochondrial iron transporters, MFRN1/2 paralog protein deficiency profoundly impaired mitochondrial respiration, induced global depletion of iron-sulfur cluster proteins, and resulted in DNA-damage and cell death. MFRN2 depletion in MFRN1-deficient tumors led to impaired growth and even tumor eradication in preclinical mouse xenograft experiments, highlighting its therapeutic potential. Conclusions Our data reveal MFRN2 as a therapeutic target of chromosome 8p deleted cancers and nominate MFNR1 as the complimentary biomarker for MFRN2-directed therapies

    A method for benchmarking genetic screens reveals a predominant mitochondrial bias

    No full text
    Abstract We present FLEX (Functional evaluation of experimental perturbations), a pipeline that leverages several functional annotation resources to establish reference standards for benchmarking human genome‐wide CRISPR screen data and methods for analyzing them. FLEX provides a quantitative measurement of the functional information captured by a given gene‐pair dataset and a means to explore the diversity of functions captured by the input dataset. We apply FLEX to analyze data from the diverse cell line screens generated by the DepMap project. We identify a predominant mitochondria‐associated signal within co‐essentiality networks derived from these data and explore the basis of this signal. Our analysis and time‐resolved CRISPR screens in a single cell line suggest that the variable phenotypes associated with mitochondria genes across cells may reflect screen dynamics and protein stability effects rather than genetic dependencies. We characterize this functional bias and demonstrate its relevance for interpreting differential hits in any CRISPR screening context. More generally, we demonstrate the utility of the FLEX pipeline for performing robust comparative evaluations of CRISPR screens or methods for processing them

    A method for benchmarking genetic screens reveals a predominant mitochondrial bias

    No full text
    We present FLEX (Functional evaluation of experimental perturbations), a pipeline that leverages several functional annotation resources to establish reference standards for benchmarking human genome‐wide CRISPR screen data and methods for analyzing them. FLEX provides a quantitative measurement of the functional information captured by a given gene‐pair dataset and a means to explore the diversity of functions captured by the input dataset. We apply FLEX to analyze data from the diverse cell line screens generated by the DepMap project. We identify a predominant mitochondria‐associated signal within co‐essentiality networks derived from these data and explore the basis of this signal. Our analysis and time‐resolved CRISPR screens in a single cell line suggest that the variable phenotypes associated with mitochondria genes across cells may reflect screen dynamics and protein stability effects rather than genetic dependencies. We characterize this functional bias and demonstrate its relevance for interpreting differential hits in any CRISPR screening context. More generally, we demonstrate the utility of the FLEX pipeline for performing robust comparative evaluations of CRISPR screens or methods for processing them

    A scalable platform for efficient CRISPR-Cas9 chemical-genetic screens of DNA damage-inducing compounds

    No full text
    Abstract Current approaches to define chemical-genetic interactions (CGIs) in human cell lines are resource-intensive. We designed a scalable chemical-genetic screening platform by generating a DNA damage response (DDR)-focused custom sgRNA library targeting 1011 genes with 3033 sgRNAs. We performed five proof-of-principle compound screens and found that the compounds’ known modes-of-action (MoA) were enriched among the compounds’ CGIs. These scalable screens recapitulated expected CGIs at a comparable signal-to-noise ratio (SNR) relative to genome-wide screens. Furthermore, time-resolved CGIs, captured by sequencing screens at various time points, suggested an unexpected, late interstrand-crosslinking (ICL) repair pathway response to camptothecin-induced DNA damage. Our approach can facilitate screening compounds at scale with 20-fold fewer resources than commonly used genome-wide libraries and produce biologically informative CGI profiles
    corecore