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COMMENTARY

Systematic epistatic mapping of cellular 
processes
Maximilian Billmann1,3  and Michael Boutros1,2* 

Abstract 

Genetic screens have identified many novel components of various biological processes, such as components 
required for cell cycle and cell division. While forward genetic screens typically generate unstructured ‘hit’ lists, genetic 
interaction mapping approaches can identify functional relations in a systematic fashion. Here, we discuss a recent 
study by our group demonstrating a two-step approach to first screen for regulators of the mitotic cell cycle, and sub-
sequently guide hypothesis generation by using genetic interaction analysis. The screen used a high-content micros-
copy assay and automated image analysis to capture defects during mitotic progression and cytokinesis. Genetic 
interaction networks derived from process-specific features generate a snapshot of functional gene relations in those 
processes, which follow a temporal order during the cell cycle. This complements a recently published approach, 
which inferred directional genetic interactions reconstructing hierarchical relationships between genes across differ-
ent phases during mitotic progression. In conclusion, this strategy leverages unbiased, genome-wide, yet highly sensi-
tive and process-focused functional screening in cells.
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Background
During cell division, a cell undergoes several consecutive 
events to replicate and divide its genome and distribute 
it to two daughter cells. The temporal order and mecha-
nism of those events has been extensively explored using 
methods that visualize the DNA content or size of cells 
[1] or their content of cell cycle-specific proteins such as 
cyclins [2]. Microscopy techniques illustrate the localiza-
tion of cellular components [3–5] and cell cycle specific 
factors or the presence of cell cycle markers such as resi-
due-specific phosphorylation of histone H3 [6, 7]. Image 
analysis algorithms can capture such cellular structures 
in an automated fashion. For example, this enables quan-
tification of the fraction of cells with condensed chro-
mosomes or visible serine 10 phosphorylated histone H3 
(pH3) levels as a proxy for cell cycle defects. Importantly, 
image analysis can extract multiple phenotypic features 
from a cell population, which allows for simultaneously 
following distinct biological processes. For instance, 

automated analysis of cells stained for their DNA and 
pH3 visualizes perturbations causing defects in mitotic 
progression (increased mitotic index in the cell popu-
lation) or cytokinesis (increased average nuclear size) 
(Fig. 1).

To identify regulators of the cell cycle in a system-
atic fashion, model systems such as budding yeast, cul-
tured Drosophila or human cells have been exploited in 
genome-scale functional screens [8–10]. Advanced auto-
mated image analysis have enabled screening for modula-
tors of diverse biological processes [11–13]. For instance, 
an RNAi screen with live imaging of human HeLa cells 
has exploited a stably expressed GFP-labeled histone H2B 
to identify genes required for proper chromosome segre-
gation and cell cycle propagation [13]. While such studies 
have identified cell cycle regulators with high sensitivity, 
genetic interaction analysis approaches have been able to 
define functional and epistatic relations between genes 
[14]. Genetic interaction analysis systematically exploits 
genetic buffering by genetic variants, which completely 
or partially overlap in function [14–17]. Genetic interac-
tion studies have been performed in yeast and assayed 
cell fitness as a composite phenotype [14, 16] capturing 
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a broad spectrum of biological processes such as sister 
chromatid segregation, cytokinesis or the mitotic exit 
[18–20]. Such genetic interaction analyses have success-
fully been applied to further characterize hits from single 
gene screens [19, 21]. Recently, genetic interaction analy-
ses approach in yeast have increased the throughput to 
the genome-scale [22] and reported a close-to-complete 
coverage of all gene pairs by measuring ~23 × 106 combi-
natorial knockouts [23]. To score genetic interactions in a 
metazoan model system, we developed an approach that 
uses systematic combinatorial RNAi in cultured Dros-
ophila cells [24, 25].

Here, we discuss a recent study by our laboratory, 
which focuses on cell cycle-relevant phenotypic features 
in Drosophila cells and uses genetic interaction mapping 
to visualize functional networks underlying mitotic pro-
gression and cytokinesis [26]. This study characterized 
novel modulators by genome-wide high-content imag-
ing RNAi screening, and structured the resulting ‘hit’ list 
using mitotic index- and nuclear area-focused genetic 
interaction analysis.

Discussion
Distinct phenotypic features guide the detection 
of specific genetic interactions
Cultured Drosophila cells have been used for genome-
scale loss-of function screens [9, 27–32] many of which 
investigating regulators of the cell cycle [9, 30–32]. Bill-
mann and colleagues have screened the genome for 
cell cycle regulators by acquiring multiple phenotypic 

features through high-content imaging [26]. The com-
parison between cell count as a surrogate for fitness with 
the mitotic index of the population or the average nuclear 
area showed that the latter two features identified addi-
tional hits [26]. We selected roughly 300 genes affecting 
the mitotic index and nuclear size. Using genetic interac-
tion analysis, networks were generated connecting genes 
that showed epistatic similarity when the mitotic index 
or nuclear area was measured. Often, genetic interactions 
were detected in the mitotic index but not when consid-
ering cell fitness only, thus providing additional, process-
specific information for network generation (Fig.  2). 
Here, we discuss two analysis strategies that exploit this 
observation. Non-redundant multi-feature epistatic infor-
mation enables inferring temporal functional relations 
between genes, while feature-specific epistatic profiles can 
reconstruct process-specific functional networks (Fig. 2).

Multi‑phenotype interactions can reconstruct directed 
hierarchies
Recent work from our laboratory has identified epistatic 
relationships between genes building networks reflect-
ing temporal order of gene function in processes such 
as the mitotic cell cycle [33]. Epistatic relationships were 
reconstructed by directed genetic interactions, indicating 
whether one gene repressed or amplified another genes 
effect (Fig. 3). This direction was inferred by comparing 
multi-feature phenotypic profiles of two genetically inter-
acting genes with their combinatorial knockdown profile 
[33]. Phenotypic features were taken from cells stained 
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Fig. 1 Schematic illustration of a cell progressing through mitosis 
and cytokinesis. Mitotic arrest or a cytokinesis defect can be intro-
duced by depleting genes involved in mitotic progression or cytoki-
nesis and cause visual changes that can be measured using markers 
for mitotic chromosomes (red) or total DNA (blue)
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Fig. 2 Genetic interactions specifically affect distinct phenotypic 
features. Example showing that the image-derived feature cell count 
did not reconstruct the genetic interaction, but the fraction of mitotic 
cells (mitotic index) provided this information. Figure was modified 
from [33]
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for their DNA content, the cytoskeletal component beta-
tubulin as well as for the presence of pH3, and described 
population features as well as the shape and texture of 
cells [33].

For instance, this reconstructed an epistasis network 
between the components of functional modules of the 
mitotic cell cycle comprising structural modules such 
as the γ-tubulin ring complex, Condensin or Cohesin, 
regulatory modules such as the anaphase-promoting 
complex/cyclosome (APC/C) or the spindle assembly 
checkpoint (SAC), motor proteins (Dynein, Dynactin) 
and regulatory genes such as polo (Drosophila PLK1) 
[33]. This approach demonstrated that multi-parametric 
genetic interaction-based networks associate gene func-
tion and, in addition, provide epistatic relationships, 
thereby systematically visualizing functional relations 
between genes. Finally, features derived from the mitosis 
marker pH3 were highly informative for functional mod-
ules regulating mitosis, suggesting that feature-specific 
genetic interaction networks provide a snapshot of func-
tional relations in the specific biological process.

Phenotype‑specific genetic interactions visualize 
process‑specific networks
To build functional networks of distinct cell cycle phases 
by genetic interaction analysis, we used high-content 
imaging of cell cycle features and a two-step screening 
approach: first, we screened a genome-wide RNAi library 
[34], measured genetic interaction profiles of selected 
genes and used this data to infer functional similarity [26] 
(Fig.  4). The genome-wide screen followed the rational 
that genes with a more pronounced depletion phenotype 
tend to genetically interact with a large fraction of genes 
[33, 35]. The authors added genes with moderate pheno-
typic strength. To generate feature-specific genetic inter-
action networks, they used the mitotic index, the fraction 
of pH3-positive cells in the cell population, which serves 
as a proxy for mitotic progression. Mitotic index-based 
genetic interactions reconstructed regulatory modules of 
mitosis, but failed to group known components required 
for cytokinesis [26]. Clustering the latter components 
required the phenotypic feature nuclear size. This feature 
captures large, multi-nucleated cells, which arise due to 
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Fig. 3 Temporal resolution of genetic interaction networks and genome-scale process-specific functional association of gene function. The 
epistatic relations between functional modules are reconstructed based on directed genetic interactions inferred from multi-feature genetic 
interaction profiles. The networks present functional relations as inferred from correlations between process-specific, single feature-focused genetic 
interaction profiles
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endoreduplication after failed cytokinesis [36]. Together, 
this approach generated genome-scale functional net-
works for specific cell cycle phases.

Those networks functionally assigned many poten-
tially novel cell cycle regulators, which had often been 
described in processes not directly connected to cell cycle 
regulation. For those genes, their phenotypic strength 
alone insufficiently guided hypothesis generation. The 
second-line genetic interaction mapping approach dep-
rioritized many of those hits, while suggesting hypoth-
esis for others such as Golgi-resident components during 
mitotic progression [26].

Conclusions
Multi-feature imaging enables the visualization of epi-
static relationships between genes by considering genetic 
interactions along the vector of phenotypic features 
such as cell count, mitotic index and nuclear area [5, 33]. 
Moreover, genetic interactions affecting one process-
specific feature capture a network of functional relations, 
zooming into a step of the causal chain in biological pro-
cesses (Fig. 3).

Methodological rapid advances in CRISPR-based 
screens in mammalian systems and small molecule screens 
will require robust experimental and computational strat-
egies to guide testable hypothesis. For example, a recent 
study in yeast generated various distinct phenotypic 
reporters by endogenously tagging various proteins with 
a GFP. The authors subsequently applied deep learning 
algorithms to the images to define cellular compartments 
and assess the response to genetic perturbations at multi-
ple phenotypic levels [37]. Recently, a method integrated 
this high-content approach with a technique for systematic 
genetic interaction analysis in yeast [38], which will enable 
building networks illustrating functional relations in vari-
ous biological processes.

Recent studies have also shown how to use image-
based screening for cellular phenotypes after treatment 
with small molecules in different genetic backgrounds to 
functionally group ~1300 pharmacologically active com-
pounds [39]. Two-step screening approaches would allow 
to extent the number of screened small molecules by sev-
eral orders of magnitude, while sensitively mapping the 
mode of action for pre-selected compounds.

Mapping gene function using genetic interactions has 
also been performed in mammalian cells [40–42]. Due 
to the larger genome size, two-step genetic interaction 
screening approaches provide an attractive strategy. 
While combinational RNAi face several challenges [43], 
more recent gene editing CRISPR/Cas9-based tech-
nologies enabled efficient and reliable gene perturbation 
across human cells [44]. In combination with a scRNA-
seq phenotypic readout, pooled CRISPR screens can be 
exploited to build process-focused genetic interaction 
networks in higher organisms [45]. Eventually, multi-step 
combinatorial gene depletion approaches will help build-
ing a systems view of biological processes such as the cell 
cycle [46] across genetic model systems.
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