7 research outputs found
Multipotent adult progenitor cells sustain function of ischemic limbs in mice
Despite progress in cardiovascular research, a cure for peripheral vascular disease has not been found. We compared
the vascularization and tissue regeneration potential of murine and human undifferentiated multipotent
adult progenitor cells (mMAPC-U and hMAPC-U), murine MAPC-derived vascular progenitors (mMAPC-VP),
and unselected murine BM cells (mBMCs) in mice with moderate limb ischemia, reminiscent of intermittent
claudication in human patients. mMAPC-U durably restored blood flow and muscle function and stimulated
muscle regeneration, by direct and trophic contribution to vascular and skeletal muscle growth. This was in
contrast to mBMCs and mMAPC-VP, which did not affect muscle regeneration and provided only limited and
transient improvement. Moreover, mBMCs participated in a sustained inflammatory response in the lower
limb, associated with progressive deterioration in muscle function. Importantly, mMAPC-U and hMAPC-U also
remedied vascular and muscular deficiency in severe limb ischemia, representative of critical limb ischemia in
humans. Thus, unlike BMCs or vascular-committed progenitors, undifferentiated multipotent adult progenitor
cells offer the potential to durably repair ischemic damage in peripheral vascular disease patients
Xenotransplantation: Where are we in 2008?
Xenotransplantation holds promise to solve the ever increasing shortage of donor organs for allotransplantation. In the last 2 decades, major progress has been made in understanding the immunobiology of pig-into-(non)human primate transplantation and today we are on the threshold of the first clinical trials. Hyperacute rejection, which is mediated by pre-existing anti-αGal xenoreactive antibodies, can in non-human primates be overcome by complement- and/or antibody-modifying interventions. A major step forward was the development of genetically engineered pigs, either transgenic for human complement regulatory proteins or deficient in the α1,3-galactosyltranferase enzyme. However, several other immunologic and nonimmunologic hurdles remain. Acute vascular xenograft rejection is mediated by humoral and cellular mechanisms. Elicited xenoreactive antibodies play a key role. In addition to providing B cell help, xenoreactive T cells may directly contribute to xenograft rejection. Long-term survival of porcine kidney- and heart xenografts in non-human primates has been obtained but required severe T and B cell immunosuppression. Induction of xenotolerance, e.g. through mixed hematopoietic chimerism, may represent the preferred approach, but although proof of principle has been delivered in rodents, induction of pig-to-non-human primate chimerism remains problematic. Finally, it is now clear that innate immune cells, in particular macrophages and natural killer cells, can mediate xenograft destruction, the determinants of which are being elucidated. Chronic xenograft rejection is not well understood, but recent studies indicate that non-immunological problems, such as incompatibilities between human procoagulant and pig anticoagulant components may play an important role. Here, we give a comprehensive overview of the currently known obstacles to xenografting: immune and non-immune problems are discussed, as well as the possible strategies that are under development to overcome these hurdles
Multipotent adult progenitor cells sustain function of ischemic limbs in mice
Despite progress in cardiovascular research, a cure for peripheral vascular disease has not been found. We compared
the vascularization and tissue regeneration potential of murine and human undifferentiated multipotent
adult progenitor cells (mMAPC-U and hMAPC-U), murine MAPC-derived vascular progenitors (mMAPC-VP),
and unselected murine BM cells (mBMCs) in mice with moderate limb ischemia, reminiscent of intermittent
claudication in human patients. mMAPC-U durably restored blood flow and muscle function and stimulated
muscle regeneration, by direct and trophic contribution to vascular and skeletal muscle growth. This was in
contrast to mBMCs and mMAPC-VP, which did not affect muscle regeneration and provided only limited and
transient improvement. Moreover, mBMCs participated in a sustained inflammatory response in the lower
limb, associated with progressive deterioration in muscle function. Importantly, mMAPC-U and hMAPC-U also
remedied vascular and muscular deficiency in severe limb ischemia, representative of critical limb ischemia in
humans. Thus, unlike BMCs or vascular-committed progenitors, undifferentiated multipotent adult progenitor
cells offer the potential to durably repair ischemic damage in peripheral vascular disease patients
The management of acute necrotizing encephalitis: a review of 369 cases
SCOPUS: ar.jinfo:eu-repo/semantics/publishe