Despite progress in cardiovascular research, a cure for peripheral vascular disease has not been found. We compared
the vascularization and tissue regeneration potential of murine and human undifferentiated multipotent
adult progenitor cells (mMAPC-U and hMAPC-U), murine MAPC-derived vascular progenitors (mMAPC-VP),
and unselected murine BM cells (mBMCs) in mice with moderate limb ischemia, reminiscent of intermittent
claudication in human patients. mMAPC-U durably restored blood flow and muscle function and stimulated
muscle regeneration, by direct and trophic contribution to vascular and skeletal muscle growth. This was in
contrast to mBMCs and mMAPC-VP, which did not affect muscle regeneration and provided only limited and
transient improvement. Moreover, mBMCs participated in a sustained inflammatory response in the lower
limb, associated with progressive deterioration in muscle function. Importantly, mMAPC-U and hMAPC-U also
remedied vascular and muscular deficiency in severe limb ischemia, representative of critical limb ischemia in
humans. Thus, unlike BMCs or vascular-committed progenitors, undifferentiated multipotent adult progenitor
cells offer the potential to durably repair ischemic damage in peripheral vascular disease patients