23 research outputs found

    The role of transient outward K+ current in electrical remodelling induced by voluntary exercise in female rat hearts

    Get PDF
    Regular exercise can lead to electrical remodelling of the heart. The cellular mechanisms associated with these changes are not well understood, and are difficult to study in human tissue but are important given that exercise is recommended to the general population. We have investigated the role played by the transient outward K+ current (Ito) in the changes in electrical activity seen in response to voluntary exercise training in rats. Female rats undertook 6 weeks of voluntary wheel running exercise (TRN) or were sedentary controls (SED). Monophasic action potentials (MAPs) were recorded from the surface of whole hearts. Whole cell patch clamp recordings of Ito; mRNA and protein levels of selected targets in sub-epicardial (EPI) and sub-endocardial myocardium of SED and TRN hearts were compared. In TRN rats, heart weight:body weight was significantly increased and epicardial MAPs significantly prolonged. Ito density was reduced in TRN EPI myocytes, such that the transmural gradient of Ito was significantly reduced (P < 0.05). Computer modelling of these changes in Ito predicted the observed changes in action potential profile. However, transmural gradients in mRNA and protein expression for Kv4.2 or mRNA levels of the Kv4.2 regulators; KChIP2 and Irx-5 were not significantly altered by voluntary exercise. We conclude that voluntary exercise electrical remodelling is caused, at least in part, by a decrease in EPI Ito, possibly because of fewer functional channels in the membrane, which results in a fall in the transmural action potential duration gradient

    Voluntary exercise-induced changes in β2-adrenoceptor signalling in rat ventricular myocytes

    Get PDF
    Regular exercise is beneficial to cardiovascular health. We tested whether mild voluntary exercise training modifies key myocardial parameters [ventricular mass, intracellular calcium ([Ca2+]i) handling and the response to β-adrenoceptor (β-AR) stimulation] in a manner distinct from that reported for beneficial, intensive training and pathological hypertrophic stimuli. Female rats performed voluntary wheel-running exercise for 6–7 weeks. The mRNA expression of target proteins was measured in left ventricular tissue using real-time reverse transcriptase-polymerase chain reaction. Simultaneous measurement of cell shortening and [Ca2+]i transients were made in single left ventricular myocytes and the inotropic response to β1- and β2-AR stimulation was measured. Voluntary exercise training resulted in cardiac hypertrophy, the heart weight to body weight ratio being significantly greater in trained compared with sedentary animals. However, voluntary exercise caused no significant alteration in the size or time course of myocyte shortening and [Ca2+]i transients or in the mRNA levels of key proteins that regulate Ca2+ handling. The positive inotropic response to β1-AR stimulation and the level of β1-AR mRNA were unaltered by voluntary exercise but both mRNA levels and inotropic response to β2-AR stimulation were significantly reduced in trained animals. The β2-AR inotropic response was restored by exposure to pertussis toxin. We propose that in contrast to pathological stimuli and to beneficial, intense exercise training, modulation of Ca2+ handling is not a major adaptive mechanism in the response to mild voluntary exercise. In addition, and in a reversal of the situation seen in heart failure, voluntary exercise training maintains the β1-AR response but reduces the β2-AR response. Therefore, although voluntary exercise induces cardiac hypertrophy, there are distinct differences between its effects on key myocardial regulatory mechanisms and those of hypertrophic stimuli that eventually cause cardiac decompensation

    Probing catalytic metal hybride surfaces

    Full text link

    Fibre-type specific concentration of focal adhesion kinase at the sarcolemma: influence of fibre innervation and regeneration.

    No full text
    In skeletal muscles, focal adhesion complexes (FACs) form part of the costamere, a sarcolemmal protein complex that enables lateral transfer of forces and ensures the stability of the sarcolemma. The present investigation tested whether localisation of a major assembly factor of FACs, focal adhesion kinase (FAK), to the sarcolemma parallels the known modulation of FACs by fibre type (innervation pattern) and fibre regeneration. Immunohistochemical experiments indicated that FAK is preferentially associated with the sarcolemma in a high proportion (>74 %) of the (slow-twitch) type I and (fast-twitch) type IIA fibres in normal rat soleus (N-SOL) muscle and of the type IIA fibres in extensor digitorum longus (N-EDL) muscle. In contrast, a low proportion (<15 %) of fast-twitch type IIB and type I fibres in N-EDL showed sarcolemmal FAK immunoreactivity. Cross-reinnervation of slow-twitch rat SOL muscle with the fast EDL nerve induced slow-to-fast fibre transformation and led to a significant reduction in sarcolemmal FAK immunoreactivity in type I and type IIA fibres. Transplantation of the fast EDL into the slow SOL bed with regeneration and reinnervation of the muscle by the SOL nerve (T-EDL) caused a significant increase in sarcolemmal FAK immunoreactivity in new type I and hybrid I/II fibres and a corresponding reduction in sarcolemmal FAK immunoreactivity in 'normal' IIA and IIB fibres. Conversely, sarcolemmal FAK immunoreactivity in small IIB fibres of T-EDL muscle was increased. Correspondingly, the transplanted and regenerated SOL (reinnervated by the fast EDL nerve) maintained the percentage of FAK-positive sarcolemma in the (regenerated) type I and IIA fibres. Thus, the expression and association of FAK with the sarcolemma are regulated (i) by factors that determine the fibre type and (ii) during fibre regeneration. Our data suggest that the integrity of sarcolemmal FACs is dependent on the fibre type and that FAC turnover is increased during regeneration of muscle fibres

    Temperature changes during strenuous exercise in different body compartments of the horse

    Full text link
    In order to evaluate metabolic heat generation and heat dissipation of strenuously exercising horses, thermal response in various body compartments was simultaneously and continuously monitored. Two horses were subjected to a long-term incremental exercise protocol with progressive increase of treadmill speed, slope and draught load. The temperatures were determined in the following structures and cavities using implanted thermocouple probes: middle gluteal, semitendinosus and masseter muscles, right cardiac ventricle, jugular vein, abdomen, rectum and subcutaneous tissue. The kinetics of temperature increases were similar for locomotor muscles, right ventricle (body core), abdomen and subcutaneous tissue. At peak exercise the highest temperatures were measured in locomotor muscle (43.3 degrees C). The blood temperature in the jugular vein was approximate to 1 degrees C below body core temperature at rest and approximate to 3 degrees C below at peak exercise. During and after exercise the rectal temperature never accurately assessed core and compartment temperatures. Maximal rectal temperatures peaked approximate to 1 degrees C below body core temperature with a lag time of 10-15 minutes

    Different molecular and structural adaptations with eccentric and conventional strength training in elderly men and women

    No full text
    Reprogramming of gene expression contributes to structural and functional adaptation of muscle tissue in response to altered use. The aim of this study was to investigate mechanisms for observed improvements in leg extension strength, gain in relative thigh muscle mass and loss of body and thigh fat content in response to eccentric and conventional strength training in elderly men (n = 14) and women (n = 14; average age of the men and women: 80.1 ± 3.7 years) by means of structural and molecular analyses. Biopsies were collected from m. vastus lateralis in the resting state before and after 12 weeks of training with two weekly resistance exercise sessions (RET) or eccentric ergometer sessions (EET). Gene expression was analyzed using custom-designed low-density PCR arrays. Muscle ultrastructure was evaluated using EM morphometry. Gain in thigh muscle mass was paralleled by an increase in muscle fiber cross-sectional area (hypertrophy) with RET but not with EET, where muscle growth is likely occurring by the addition of sarcomeres in series or by hyperplasia. The expression of transcripts encoding factors involved in muscle growth, repair and remodeling (e.g., IGF-1, HGF, MYOG, MYH3) was increased to a larger extent after EET than RET. MicroRNA 1 expression was decreased independent of the training modality, and was paralleled by an increased expression of IGF-1 representing a potential target. IGF-1 is a potent promoter of muscle growth, and its regulation by microRNA 1 may have contributed to the gain of muscle mass observed in our subjects. EET depressed genes encoding mitochondrial and metabolic transcripts. The changes of several metabolic and mitochondrial transcripts correlated significantly with changes in mitochondrial volume density. Intramyocellular lipid content was decreased after EET concomitantly with total body fat. Changes in intramyocellular lipid content correlated with changes in body fat content with both RET and EET. In the elderly, RET and EET lead to distinct molecular and structural adaptations which might contribute to the observed small quantitative differences in functional tests and body composition parameters. EET seems to be particularly convenient for the elderly with regard to improvements in body composition and strength but at the expense of reducing muscular oxidative capacity
    corecore