80 research outputs found

    Self-Dual Fields on Self-Dual Backgrounds and the Double Copy

    Full text link
    We explore the double copy for self-dual gauge and gravitational fields on self-dual background spacetimes. We consider backgrounds associated to solutions of the second Plebanski equation and describe results with different gauge-fixing conditions. Finally we discuss the kinematic and ww-algebras and the double copy, identifying modified Poisson structures and kinematic structure constants in the presence of the self-dual background. The self-dual plane wave and Eguchi-Hanson spacetimes are studied as examples and their respective ww-algebras derived.Comment: 23 page

    Conformal topological Yang-Mills theory and de Sitter holography

    Full text link
    A new topological conformal field theory in four Euclidean dimensions is constructed from N=4 super Yang-Mills theory by twisting the whole of the conformal group with the whole of the R-symmetry group, resulting in a theory that is conformally invariant and has two conformally invariant BRST operators. A curved space generalisation is found on any Riemannian 4-fold. This formulation has local Weyl invariance and two Weyl-invariant BRST symmetries, with an action and energy-momentum tensor that are BRST-exact. This theory is expected to have a holographic dual in 5-dimensional de Sitter space.Comment: 34 pages, AMSTex, Reference adde

    Integrals of Motion in the Two Killing Vector Reduction of General Relativity

    Full text link
    We apply the inverse scattering method to the midi-superspace models that are characterized by a two-parameter Abelian group of motions with two spacelike Killing vectors. We present a formulation that simplifies the construction of the soliton solutions of Belinski\v i and Zakharov. Furthermore, it enables us to obtain the zero curvature formulation for these models. Using this, and imposing periodic boundary conditions corresponding to the Gowdy models when the spatial topology is a three torus T3T ^3, we show that the equation of motion for the monodromy matrix is an evolution equation of the Heisenberg type. Consequently, the eigenvalues of the monodromy matrix are the generating functionals for the integrals of motion. Furthermore, we utilise a suitable formulation of the transition matrix to obtain explicit expressions for the integrals of motion. This involves recursion relations which arise in solving an equation of Riccati type. In the case when the two Killing vectors are hypersurface orthogonal the integrals of motion have a particularly simple form.Comment: 20 pages, plain TeX, SU-GP-93/7-8, UM-P-93/7

    Non-Supersymmetric Loop Amplitudes and MHV Vertices

    Full text link
    We show how the MHV diagram description of Yang-Mills theories can be used to study non-supersymmetric loop amplitudes. In particular, we derive a compact expression for the cut-constructible part of the general one-loop MHV multi-gluon scattering amplitude in pure Yang-Mills theory. We show that in special cases this expression reduces to known amplitudes - the amplitude with adjacent negative-helicity gluons, and the five gluon non-adjacent amplitude. Finally, we briefly discuss the twistor space interpretation of our result.Comment: 31 pages, 5 figures, Typos Correcte

    Stable Non--Perturbative Minimal Models Coupled to 2D Quantum Gravity

    Full text link
    A generalisation of the non--perturbatively stable solutions of string equations which respect the KdV flows, obtained recently for the (2m1,2)(2m-1,2) conformal minimal models coupled to two--dimensional quantum gravity, is presented for the (p,q)(p,q) models. These string equations are the most general string equations compatible with the qq--th generalised KdV flows. They exhibit a close relationship with the bi-hamiltonian structure in these hierarchies. The Ising model is studied as a particular example, for which a real non-singular numerical solution to the string susceptibility is presented.Comment: (35 pp; two figures not included; plain TEX

    One-Loop Gauge Theory Amplitudes in N=4 Super Yang-Mills from MHV Vertices

    Full text link
    We propose a new, twistor string theory inspired formalism to calculate loop amplitudes in N=4 super Yang-Mills theory. In this approach, maximal helicity violating (MHV) tree amplitudes of N=4 super Yang-Mills are used as vertices, using an off-shell prescription introduced by Cachazo, Svrcek and Witten, and combined into effective diagrams that incorporate large numbers of conventional Feynman diagrams. As an example, we apply this formalism to the particular class of MHV one-loop scattering amplitudes with an arbitrary number of external legs in N=4 super Yang-Mills. Remarkably, our approach naturally leads to a representation of the amplitudes as dispersion integrals, which we evaluate exactly. This yields a new, simplified form for the MHV amplitudes, which is equivalent to the expressions obtained previously by Bern, Dixon, Dunbar and Kosower using the cut-constructibility approach.Comment: Latex, 35 pages, 3 figures. v2: remarks on gauge invariance added. Published version to appear in Nuclear Physics
    corecore