655 research outputs found

    Characteristics and performance of settlement programs : a review

    Get PDF
    The studies and cases reviewed by the authors suggest that settlement programs are too often designed on the assumption that all settlers will or can succeed. This had led to too much centralized administration and rigid designs, rather than reliance on decentralized approaches, flexibility in implementation, support for spontaneous settlement, and reliance on the settler's own investment capacity. Collective forms of crop production have not worked. Cropland is best allocated to individual families whose land rights must be clearly defined as ownership or long-term leases. Farm sizes must be flexibly adjusted to skills, the availability of family labor, and the families'capital ownership. Settlers should therefore be allowed to sell or rent the land to other beneficiaries. If poor settlers are to benefit or succeed, settlement cannot be based on credit finance but must include grants. Paternalistic constraints on the choice of crops or technologies, marketing, or participation in the labor force have usually not been enforceable or have had negative effects.Agricultural Knowledge&Information Systems,Urban Housing,Banks&Banking Reform,Environmental Economics&Policies,Housing&Human Habitats

    COLA with massive neutrinos

    Get PDF
    The effect of massive neutrinos on the growth of cold dark matter perturbations acts as a scale-dependent Newton's constant and leads to scale-dependent growth factors just as we often find in models of gravity beyond General Relativity. We show how to compute growth factors for Λ\LambdaCDM and general modified gravity cosmologies combined with massive neutrinos in Lagrangian perturbation theory for use in COLA and extensions thereof. We implement this together with the grid-based massive neutrino method of Brandbyge and Hannestad in MG-PICOLA\texttt{MG-PICOLA} and compare COLA simulations to full N\it N-body simulations of Λ\LambdaCDM and f(R)f(R) gravity with massive neutrinos. Our implementation is computationally cheap if the underlying cosmology already has scale-dependent growth factors and it is shown to be able to produce results that match N\it N-body to percent level accuracy for both the total and CDM matter power-spectra up to k≲1h/k\lesssim 1 h/Mpc.Comment: 29 pages, 15 figures, 1 table, version accepted for publication in JCAP, added frame-lagging terms in 2LPT sections (results unaffected) and appendix on comparison to SP

    Investigating the degeneracy between modified gravity and massive neutrinos with redshift-space distortions

    Get PDF
    There is a well known degeneracy between the enhancement of the growth of large-scale structure produced by modified gravity models and the suppression due to the free-streaming of massive neutrinos at late times. This makes the matter power-spectrum alone a poor probe to distinguish between modified gravity and the concordance Λ\LambdaCDM model when neutrino masses are not strongly constrained. In this work, we investigate the potential of using redshift-space distortions (RSD) to break this degeneracy when the modification to gravity is scale-dependent in the form of Hu-Sawicki f(R)f(R). We find that if the linear growth rate can be recovered from the RSD signal, the degeneracy can be broken at the level of the dark matter field. However, this requires accurate modelling of the non-linearities in the RSD signal, and we here present an extension of the standard perturbation theory-based model for non-linear RSD that includes both Hu-Sawicki f(R)f(R) modified gravity and massive neutrinos.Comment: 24 pages, 12 figures, 1 table; corrected typo in prefactors of the '13'-type 1-loop SPT term

    Members of the PbFCI-Type Family: Possible Candidates for Room-Temperature Photochemical Hole Burning

    Get PDF
    We report on crystal growth and about physico-chemical studies on SryBa1-yFClxBr1-x (y = 0, 0.5, and 1) compounds doped with Sm. Persistent spectral hole burning at 300 K is further reported on Sr0.5Ba0.5FCl0.5Br0.5:Sm single crystals

    Calculating the Velocity of a Fast-Moving Snow Avalanche Using an Infrasound Array

    Get PDF
    On 19 January 2012, a large D3 avalanche (approximately 103 t) was recorded with an infrasound array ideally situated for observing the avalanche velocity. The avalanche crossed Highway 21 in Central Idaho during the largest avalanche cycle in the 15 years of recorded history and deposited approximately 8 m of snow on the roadway. Possible source locations along the avalanche path were estimated at 0.5 s intervals and were used to calculate the avalanche velocity during the 64 s event. Approximately 10 s prior to the main avalanche signal, a small infrasound signal originated from the direction of the start zone. We infer this to be the initial snow pack failure, a precursory signal to the impending avalanche. The avalanche accelerated to a maximum velocity of 35.9 ± 7.6 m s−1 within 30 s before impacting the highway. We present a new technique to obtain high spatial and temporal resolution velocity estimates not previously demonstrated with infrasound for avalanches and other mass wasting events

    COLA with scale-dependent growth: applications to screened modified gravity models

    Get PDF
    We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f(R) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to ΛCDM even when using a fairly small number of COLA time steps

    Design Space Exploration of Pericyclic Transmission with Counterbalance and Bearing Load Analysis

    Get PDF
    The pericyclic transmission provides the opportunity to vastly impact transmission design in rotorcraft due to its ability to provide exceedingly high reduction ratios in a single stage that would normally require multiple gear stages to produce. This could lead to lighter transmissions with fewer components, increased range, reliability, efficiency, speed and decreased cost to maintain. While many previous studies have focused upon the gearing within the pericyclic transmission, this work focused on what influences pericyclic geometry, and how changes in geometry impacts bearing loads. Specifically the loading of bearings that must deliver power from the input shaft to the nutating and rotating gears of the system were of primary concern. A comprehensive look at dynamic loads generated by nutating bodies was performed. Methods to address these dynamic loads via application of counterbalances and deviation from conventional pericyclic transmission designs were utilized to negate the dynamic moment of concern. Finally a static solver was used to determine the bearing loads with updated component geometries and mass moment of inertias that included the required counterbalances

    Comprehensive Modeling and Analysis of Rotorcraft Variable Speed Propulsion System With Coupled Engine/Transmission/Rotor Dynamics

    Get PDF
    This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean-line compressor and turbine approximations is developed. Finally an analysis of high frequency gear dynamics including the effect of tooth mesh stiffness variation under variable speed operation is conducted including experimental validation. Through exploring the interactions between the various subsystems, this investigation provides important insights into the continuing development of variable-speed rotorcraft propulsion systems

    Underwater Cultural Heritage in the Pacific: Themes and Future Directions

    Get PDF

    Radi-Eye:Hands-Free Radial Interfaces for 3D Interaction using Gaze-Activated Head-Crossing

    Get PDF
    Eye gaze and head movement are attractive for hands-free 3D interaction in head-mounted displays, but existing interfaces afford only limited control. Radi-Eye is a novel pop-up radial interface designed to maximise expressiveness with input from only the eyes and head. Radi-Eye provides widgets for discrete and continuous input and scales to support larger feature sets. Widgets can be selected with Look & Cross, using gaze for pre-selection followed by head-crossing as trigger and for manipulation. The technique leverages natural eye-head coordination where eye and head move at an offset unless explicitly brought into alignment, enabling interaction without risk of unintended input. We explore Radi-Eye in three augmented and virtual reality applications, and evaluate the effect of radial interface scale and orientation on performance with Look & Cross. The results show that Radi-Eye provides users with fast and accurate input while opening up a new design space for hands-free fluid interaction
    • …
    corecore