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ABSTRACT 

The pericyclic transmission provides the opportunity to vastly impact transmission design in rotorcraft due to its ability to 

provide exceedingly high reduction ratios in a single stage that would normally require multiple gear stages.  This could lead 

to lighter transmissions with fewer components, increased reliability, efficiency, speed and decreased cost to maintain.  While 

many previous studies have focused upon the gearing within the pericyclic transmission, this work focused on what influences 

pericyclic geometry, and how changes in geometry impact bearing loads. Specifically, the loading of bearings that must deliver 

power from the input shaft to the nutating and rotating gears of the system were of primary concern.  A comprehensive look at 

dynamic loads generated by nutating bodies was performed.  Methods to address these dynamic loads via application of 

counterbalances, and deviation from conventional pericyclic transmission designs were utilized to negate the dynamic moment 

of concern.  Counterbalances negating the dynamic moment were shown to weigh between 30-50% of the pericyclic motion 

converter gears in a 40:1 reduction ratio pericyclic design at 12,000 rpm input speed and reduced applied moments by three 

orders of magnitude.  Finally, a static solver was used to determine the bearing loads with updated component geometries and 

mass moment of inertias that included the required counterbalances. 

 

INTRODUCTION  

Rigorous goals have been set for improvements in efficiency, 

reliability, maintainability, range, and speed in future 

rotorcraft.  In order to attain these goals, new innovative 

configurations and materials must be incorporated into 

designs that can expand operational envelopes of rotorcraft.  

One candidate for exploration to meet future vertical lift goals 

is the pericyclic transmission system.  A primary 

characteristic that separates the pericyclic transmission from 

conventional gear trains is the utilization of nutational motion 

in geared bodies, specifically in the motion of the pericyclic 

motion converter (PMC) gear body.  This motion enables the 

use of gear train geometries that contain highly conformal 

pitch cones leading to many gear teeth in mesh 

simultaneously sharing transmission loads.  Load sharing 

enabled by the conformal geometry can lead to  quieter 

transmissions, as well as opportunities for high reduction 

ratios(~50:1) and an overall higher power density 

transmission.   

The pericyclic drive is composed of four primary 

components, (1) an input carrier or shaft which drives the (2) 

PMC body through the PMC bearings, and meshes with (3) 

the reaction control member (RCM) gear and drives (4) the 

output gear and shaft.  These four components are seen in 

Figure 1.  The input to the drive is either internal (shaft) or 

external (carrier) to the PMC gears.  The RCM gear can be 

driven by a secondary input to vary the reduction ratio or held 

stationary to provide the necessary reaction force for the PMC 

to mesh with the output gear.  The transmission can make use 
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of its symmetry to mirror its components and split the drive 

load through two PMCs, which decreases loads on the input 

and output due to balancing forces.  This symmetry is shown 

in Figure 1. 

Previous bodies of work developed a strong fundamental 

understanding of the opportunity to make use of nutational 

motion in mechanical transmissions [1-5].  Kinematics, 

application of face gears, power flow, and variable speed 

configurations were investigated further by Elmoznino and 

Saribay in recent years [6-10].  This further developed designs 

of the transmission, examined lubrication of conjugate face 

Figure 1. Dual PMC pericyclic transmission with 

external input carrier driving PMC gears 
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gears, and highlighted the opportunity to make use of the 

transmission in rotorcraft applications.  Further work by 

Mathur [11-13] examined the ability to make use of bevel 

gears in pericyclic transmissions, and further resolved load 

distribution, mesh stiffness, transmission error and 

elastohydrodynamic lubrication (EHL) analysis.  To this 

point, understanding of meshing gear faces is fairly well 

understood.  A full model of the pericyclic transmission, 

including all bearings and geared bodies, has yet to be 

developed.  Application of such tools will be critical to fully 

understanding loading of and sizing of individual 

transmission components.  

One component in particular, the PMC bearings which are 

visible in Figure 2, are of particular design concern.  Previous 

work dealing with the dynamics of a geared nutating plate 

body dating back to the 1970’s [14] showed that bearing loads 

due to the dynamic moment generated, in their particular case, 

would be roughly 28 times greater than the loads due to the 

gear reaction forces.  While PMC bearing loads had been 

investigated briefly in previous published work related to the 

pericyclic transmission, they neglected this critical dynamic 

moment term.  This led to a desire to fully appreciate the 

dynamic moments generated by the PMC body and translate 

them to radial forces acting upon the PMC bearings.  This 

work seeks to define the expected static and dynamic 

moments the PMC bearings must contend with, as well as 

reveal the resulting radial loads associated with these 

moments.  The design space of the Pericyclic transmission, 

more specifically the PMC, will also be explored to reveal 

what factors heavily impact geometry and kinematics, and 

subsequently dynamics and bearing loads. 

PMC GEOMETRY AND POWER FLOW 

PMC Pitch Cone Geometry 

For pericyclic transmissions utilizing internal and external 

bevel gears, the geometry of the transmission is largely driven 

by the pitch cone angles and pitch diameters. These pitch cone 

angles define the shape of the meshing gear faces of the three 

geared bodies: the stationary RCM, the rotating and nutating 

PMC, and the output gear. The PMC geometry is especially 

sensitive to the pitch cone angles due to its two internal bevel 

gear faces providing bounds to the body and defining its size. 

The pitch cone apexes across all geared members are required 

to be coincident for the gears to mesh properly, and the point 

where they coincide is the nutation and rotation center of the 

PMC.  Figure 3 displays the meshing of the PMC with the 

RCM and Output gear bodies as well as the coincidence of the 

two PMC pitch cone vertices.  

The pitch cone angles of these three bodies are 

mathematically defined by five parameters, the teeth numbers 

of each gear pair where N1 denotes the RCM gear, N2 the 

PMC face meshing with the RCM, N3 the PMC face meshing 

with the output, and N4 for the output gear. The fifth defining 

parameter is the nutation angle β visible in Figure 2.  The 

corresponding pitch cone angles can then be calculated using: 

𝛽1 =  atan (
sin(𝜋 − 𝛽)

(
𝑁2
𝑁1
) + cos(𝜋 − 𝛽)

) (1a) 

Figure 3. Pericyclic pitch cones and meshing of back to back pitch cones on PMC body with RCM and output 

Figure 2. PMC and input shaft cutaway 

displaying location of PMC bearings 
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𝛽2 =  𝜋 − 𝛽 − 𝛽1 (1b) 

𝛽3 =  atan (
sin(𝜋 − 𝛽)

(
𝑁4
𝑁3
) + cos(𝜋 − 𝛽)

) (1c) 

𝛽4 =  𝜋 − 𝛽 − 𝛽3 (1d) 

The corresponding gear mesh pitch diameters are found by 

multiplying the teeth numbers of each gear by the module, 

with each meshing gear pair must have the same module 

value. 

Using these equations, impacts of varying parameters allows 

for changes in geometry to be observed.  In particular, 

variation in nutation angle is a good candidate to examine as 

it impacts all pitch cone angles while not changing the overall 

reduction ratio of the transmission system. This ratio is 

defined as: 

𝜔𝑖𝑛
𝜔𝑜𝑢𝑡

=
1

(1 −
𝑁1
𝑁2

∗
𝑁3
𝑁4
)
 (2) 

A common tooth number set provided by Ref. 11 uses an N1, 

N2, N3, and N4 of 52, 54, 81, and 80, which provides a 

reduction ratio of 40:1.  A module of 1/6 in/teeth for both gear 

sets, also used in previous studies, was used to generate pitch 

diameters.  Using these parameters and Equation 1, pitch cone 

angles with varying nutation angle from two degrees to eight 

degrees were generated and plotted to study impacts on PMC 

geometry.  Figure 4 below displays the pitch cones as nutation 

angle varies, the most obvious trend that is observed is the 

flattening of the PMC axially as the nutation angle increases.  

The dramatic decrease in length is accompanied by a peeling 

of the internal bevel gear faces away from the external bevel 

gear faces on the RCM and output gear.  This decreases the 

conformity of the gear meshes as well as the number of teeth 

simultaneously in contact, removing the beneficial load 

sharing and quiet operation of the transmission.  The axial 

shortening of the PMC body also has the critical effect of 

Figure 4. Pericyclic pitch cone shapes with varying nutation angle displaying reduction of total length through 

flattening of PMC body 
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limiting the area available for the PMC bearings which drive 

power from the input shaft or carrier to the PMC.  

Additionally, the decreased length limits the effective lever 

arm with which the PMC bearings radial forces react the input 

carrier torque in the direction of the nutational velocity 

component.  This effect will be touched on in the coming 

section.  One positive impact that comes with increased 

nutation angle is the flattening of the PMC pitch cones greatly 

decreases the overall size, and therefore weight, of the PMC 

body.  Mass efficiency is critical for airworthiness of 

rotorcraft transmission components, so while the negative 

impacts of increased nutation angle are notable, the ability to 

greatly cut weight of the transmission cannot be ignored.  

Beyond these low nutation angles presented in Figure 4 it 

must be noted that for a given pericyclic geometry there will 

be a point at which the pitch cone angles of one of the PMC 

gear faces will invert from internal to external pitch cones.  

The PMC output gear side at eight degree nutation angle is on 

the verge of this inversion.  If the angle is increased beyond 

the point of inversion, the transmission ceases to function as 

a pericyclic transmission and behaves as a humpage drive.  

This design space will not be explored within this work due 

to the interest to focus mainly on the pericyclic transmission 

system architecture. 

Input Power and Torque Transfer to PMC 

In order to understand the manner in which power is 

transmitted from the input to the PMC through the PMC 

bearings, the velocity components of the PMC must be found.  

The input rotational velocity is given as: 

Ωin⃗⃗⃗⃗ ⃗⃗ =  {
0
0
ωin

} (3) 

The angular velocity components of the input collars on 

which the PMC bearings sit can then be found through a 

rotation about the x axis by the nutation angle β: 

𝑅𝑥 = [

1 0 0
0 cos (𝛽) −sin (𝛽)

0 sin (𝛽) cos (𝛽)
] (4) 

such that: 

�⃗� 𝑖𝑛 =  [

1 0 0
0 cos (𝛽) −sin (𝛽)

0 sin (𝛽) cos (𝛽)
] ∙ {

0
0
ωin

}

= {

0
−𝜔𝑖𝑛 ∗ sin(𝛽)

𝜔𝑖𝑛 ∗ cos(𝛽)
} 

(5) 

The PMC speed can then be represented as a combination of 

the input shaft collar speed and the gear ratio between the 

RCM and PMC gear. Ref. 9 discusses this in depth and the 

PMC angular velocity is shown as: 

�⃗� 𝑃𝑀𝐶 = {

0
−𝜔𝑖𝑛 ∗ sin(𝛽)

𝜔𝑖𝑛 ∗ cos(𝛽) − 𝜔𝑖𝑛 ∗ (
𝑁1

𝑁2
)

} (6) 

With angular velocities of the input and PMC bodies 

understood, torque transfer from the input to the PMC is 

calculable.  Torque cannot be transferred through bearings in 

the direction in which they rotate, which is the direction of the 

PMC rotational velocity.  Through conservation of energy, 

the input power driving torque into the PMC must come from 

the nutational velocity component of PMC motion: −𝜔𝑖𝑛 ∗
sin(𝛽). The torque from the input carrier to the PMC can then 

be described as the input power divided by the nutational 

speed of the PMC body.  A generalized form of this is laid out 

in equations for epicyclic drive trains in Ref. 5 and in this 

work is described as: 

 �⃗� 𝑃𝑀𝐶 = −𝑃𝑖𝑛/ (−𝜔𝑖𝑛 ∗ sin(𝛽)) (7) 

with 𝑃𝑖𝑛  as the input power to the transmission. 

Due to the nutation angle being somewhere in the range of 2 

to 8 degrees, sin(𝛽) is quite low in value and leads to a low 

nutational angular velocity even with high transmission input 

speeds.  This means the torque from the input carrier to the 

PMC can remain high even when the transmission operates at 

high speeds.  Through Figure 4 it is understood that increasing 

nutation angle decreases PMC axial length.  This decreases 

the available distance to place the PMC bearings from the 

PMC center, limiting the available torque reaction arm.  As a 

result, varying nutation angle allows for a balance between 

the available torque rection arm, and overall torque due to the 

PMC nutation speed.  Management of these two terms allows 

for geometries capable of limit static PMC bearing radial 

loads.  There is still the question of how this torque from the 

input to the PMC compares to the dynamic moments 

generated by the motion of the PMC body. This will be 

resolved in the next section with the angular velocity terms 

derived above. 

PMC DYNAMICS 

Dynamic Moment Generated by PMC Body 

This section will show the dynamic moment generated by the 

motion of the PMC body.  It will be assumed in this section 

that the mass moment of inertia is symmetrical about the 

rotation axis of the PMC and is calculated as: 
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𝐼𝑃𝑀𝐶 = [

𝐼𝑝𝑥𝑥 0 0

0 𝐼𝑝𝑦𝑦 0

0 0 𝐼𝑝𝑧𝑧

] (8) 

The angular momentum is calculated by the dot product of the 

moment of inertia and the angular velocity of the PMC body 

from Equation 6: 

�⃗⃗� 𝑃𝑀𝐶 = 𝐼𝑃𝑀𝐶 ∙ �⃗� 𝑃𝑀𝐶

=

[
 
 
 
 

0
−𝐼𝑝𝑦𝑦 ∗ 𝜔𝑖𝑛 ∗ sin(𝛽)

𝐼𝑝𝑧𝑧 ∗ (𝜔𝑖𝑛 ∗ cos(𝛽) − 𝜔𝑖𝑛 ∗ (
𝑁1

𝑁2
)) 
]
 
 
 
 

 
(9) 

The dynamic moment is calculated through the time rate of 

change of the angular momentum: 

𝐷�⃗⃗� 𝑃𝑀𝐶
𝐷𝑡

=
𝛿�⃗⃗� 𝑃𝑀𝐶
𝛿𝑡

+ �⃗� 𝑃𝑀𝐶𝑓 × �⃗⃗� 𝑃𝑀𝐶 (10) 

In this study it is assumed that the time derivative of the 

change in angular momentum is zero due to the assumed 

operation of the pericyclic transmission at a fixed speed and 

�⃗� 𝑃𝑀𝐶𝑓 is the angular velocity of the PMC frame described in 

Equation 5. A reorganized form of the term resulting from the 

cross product is shown as: 

𝐷�⃗⃗� 𝑃𝑀𝐶
𝐷𝑡

=

[
 
 
 −𝜔𝑖𝑛

2 ∗ sin(𝛽) ∗ [𝐼𝑝𝑧𝑧 ∗ (cos(𝛽) − (
𝑁1

𝑁2
)) − 𝐼𝑝𝑦𝑦 ∗ cos (𝛽)]

0
0 ]

 
 
 
 

(11) 

It was also assumed that the inertial body of the PMC is in the 

shape of a hollow cylinder with a mass 𝑀, inner radius 𝑅𝑖, an 

outer radius 𝑅𝑜, and some length L.  Centering this 

symmetrical cylinder at the nutation point of the PMC, the 

inertia terms are approximately written as: 

𝐼𝑝𝑥𝑥 = 𝐼𝑝𝑦𝑦 =
1

4
∗ 𝑀 ∗ (𝑅𝑂

2 + 𝑅𝑖
2) +

1

12
∗ 𝑀 ∗ 𝐿2  

𝐼𝑝𝑧𝑧 =
1

2
∗ 𝑀 ∗ (𝑅𝑂

2 + 𝑅𝑖
2)  

(12) 

Using tooth numbers to generate lengths and radii from the 

calculated pitch cone angles in Figure 4 the dynamic moment 

was calculated.  Assuming that 𝑅𝑜is the outer radius of the 

larger of the two PMC pitch cones, 𝑅𝑖 is the outer radius of 

the smaller of the two, and estimating the total length is 

symmetrical about the PMC nutation center the moment of 

inertia is found.  The mass of the PMC is found by using the 

density of gear steel (0.2908 lbs/in^3) times the volume of a 

hollow cylinder.  For this example we can use a configuration 

utilized by previous work of rotorcraft transmission of 1000 

HP with an input speed of 12,000 rpm and with a reduction 

ratio of 40:1 resulting in an output speed of 300 rpm.  This 

study focuses on a dual pericyclic configuration where two 

PMC bodies are assumed to equally share the power from the 

input.  The resulting dynamic moment from two to eight 

degrees nutation angle for one of the PMC’s is plotted on a 

log scale in Figure 5 along with the static torque delivered 

from input carrier to the PMC through the PMC bearings as 

was discussed in the previous section.  The dynamic moments 

calculated through this approach are roughly three orders of 

magnitude greater than the static torque shown and are 

immediately seen as a critical issue for operation of the 

transmission at high speeds. These values are notably higher 

than the cited work which showed only two orders of 

magnitude higher dynamic loads than static loads.  This is 

partially due to the high operation speeds desired for case 

study. It is also due in part to the lack of mass optimization of 

the PMC body through tooth number selection and nutation 

angle. 

Without any additional attempts to diminish the dynamic 

moment generated, many designs of the pericyclic 

transmission are severely speed limited.  Decreasing the input 

speed is the simplest way to examine where the dynamic 

moment is on the same order of magnitude as the input torque.  

This is depicted in Figure 6 where the input speed is dropped 

until the orders of magnitude of the moments are similar to 

one another.  It isn’t until the Input speed is around one order 

of magnitude lower that the two moments are equal in value. 

At an input speed of 1,000 rpm this design’s 40:1 reduction 

ratio would provide an output speed of 25 rpm, far too slow 

for use in rotorcraft.  It was determined that a method to 

Figure 5. Dynamic moment of PMC in comparison 

with input moment delivered to PMC 
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reduce or eliminate the dynamic moment was required to 

make the pericyclic drive feasible. 

 

Examination of Dynamic Moment Terms  

The dynamic moment generated by the body is composed of 

two primary terms, the first related to the mass moment of 

inertia about the rotational axis and the second related to the 

mass moment of inertia about the nutational axis.   

𝑀𝐷 = −𝜔𝑖𝑛
2 ∗ sin(𝛽) ∗ [𝐼𝑝𝑧𝑧 ∗ (cos(𝛽) −

 (
𝑁1

𝑁2
)) − 𝐼𝑝𝑦𝑦 ∗ cos (𝛽)]  

(13) 

Setting the dynamic moment term equal to zero, a condition 

could be discovered with which the dynamic moment could 

be neutralized.  Dividing out the sine of the nutation angle and 

the input speed squared provides:  

0 = 𝐼𝑝𝑧𝑧 ∗ (cos(𝛽) − (
𝑁1

𝑁2
)) − 𝐼𝑝𝑦𝑦 ∗ cos (𝛽) 

(14) 

From this equation it is observed that the dynamic moment 

cancellation is independent of transmission input speed.  

Additionally, due to the two terms being subtracted from one 

another, a scenario could be found in which the two terms are 

equal, leading to a cancellation of the dynamic moment.  

Terms were rearranged to help better visualize necessary 

steps to cancel the dynamic moment.  One way to display 

Equation 14 was as equivalent ratios of nutation angle and 

tooth number terms, and inertial terms: 

𝐼𝑝𝑦𝑦

𝐼𝑝𝑧𝑧
=

(cos(𝛽) − (
𝑁1
𝑁2
))

cos(𝛽)
⁄

 
(15) 

This ratio is helpful and will be discussed further later, it 

doesn’t provide much insight to what the appropriate tooth 

numbers or nutation angles should be.  To get a better idea of 

mathematically what design aspects are required,  the 

approximate mass moment of inertia terms for a PMC body 

from Equation 12 were substituted into Equation 14 so that: 

1

2
∗ 𝑀 ∗ (𝑅𝑂

2 + 𝑅𝑖
2) ∗ (cos(𝛽) − (

𝑁1

𝑁2
)) − 

(
1

4
∗ 𝑀 ∗ (𝑅𝑂

2 + 𝑅𝑖
2) +

1

12
∗ 𝑀 ∗ 𝐿2) ∗ cos(𝛽) = 0  

(16) 

Solving for 
𝑁1

𝑁2
 results in the equation: 

𝑁1

𝑁2
=  
1

2
∗ cos(𝛽) −

1

6
∗
cos (𝛽)𝐿2

(𝑅𝑂
2 + 𝑅𝑖

2)
 (17) 

Upon examination of this formula it is difficult to see a clear 

trend that aids in diminishing the dynamic moment.  One 

option is to increase the effective magnitude of the (𝑅𝑂
2 + 𝑅𝑖

2) 
term by adding additional weight at the nutation center 

without increasing the effective axial length 𝐿 that mass’s 

moment of inertia would act at via a counterbalance, you 

could make 

(𝑅𝑂
2 + 𝑅𝑖

2) ≫  𝐿2 (18) 

 If this were the case then 
𝐿2

(𝑅𝑂
2+𝑅𝑖

2)
 would be near zero, leaving 

the right side of Equation 17 with only the one half cosine of 

the nutation angle.  Knowing that the nutation angle must be 

a relatively low value, it could be assumed that cos(𝛽) would 

be a value near one.  This leaves us with the desire to have 
𝑁1

𝑁2
  

to be roughly less than or equal to one half to nearly eliminate 

the dynamic moment generated.   

There are two major impacts on pericyclic desing space with 

having 
𝑁1

𝑁2
≤

1

2
.  The first noticeable impact this restraint 

would have is on the reduction ratio of the transmission. It 

would limit the high reduction ratios achieved by having very 

Figure 6. Dynamic moment and input torque for 

several transmission input speeds 
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close tooth numbers in meshing gear faces, like in the first 

example, due to the reduction ratio approximately equaling: 

𝜔𝑖𝑛
𝜔𝑜𝑢𝑡

≈
1

(1 −
1
2
∗
𝑁3
𝑁4
)
 (19) 

so that even when 
𝑁3

𝑁4
 was close together in tooth number and 

approximately one the reduction ratio would only be around 

2:1.  In order to obtain higher reduction ratios which make the 

pericyclic competitive, the tooth difference in the second gear 

mesh would also have to increase.  For example, in order to 

obtain the 40:1 reduction ratio in the previously stated 

example, 
𝑁3

𝑁4
 would need to be an integer multiple of 

39

20
.  

Higher variation in tooth number needed for higher reduction 

ratios between meshing gear faces would also lead to a much 

less conformal gear mesh, decreasing the number of teeth 

simultaneously in contact and increasing tooth loads.   

The second noticeable impact on transmission design from a 

configuration fixing 
𝑁1

𝑁2
≤

1

2
 is in sizing of components.  For 

example let us consider a 40:1 reduction ratio pericyclic 

transmission once again with similar PMC tooth numbers to 

the first example but with the RCM and output (N1 and N4) 

tooth numbers altered to satisfy the constraint that 
𝑁1

𝑁2
≤

1

2
.  

Gear teeth numbers of 20, 50, 78, and 32 were chosen for N1, 

N2, N3 and N4 respectively.  Pitch cone sizes were calculated 

once again using Equation 1, and instead of plotting pitch 

cone geometries, due to their odd shapes, plotting the PMC 

axial length across the varying nutation angles was easier and 

is shown in Figure 7 along with lines depicting the 

approximate PMC inner and outer radius defined by the two 

pitch cone diameters.  Figure 8 displays the inertial ratios 

mentioned in Equation 15 and Figure 9 a pitch cone sample 

output where overall PMC length is more reasonable at a 

higher nutation angle.  The range of nutation angles the PMC 

size was examined across was much larger than the previous 

example.  This is due to the large difference in tooth number 

increasing the inflection point of the pitch cones to much 

greater nutation angles.  It should be noted that increasing the 

range of the nutation angle is beneficial to the static PMC 

bearings loads.  As discussed earlier, increased nutation angle 

increases the nutational velocity component, which decreases 

the torque delivered from the input carrier to the PMC which 

must pass through the PMC bearings.  This is beneficial in 

decreasing maximum bearing loads.   

From Figure 8 the two inertial terms converge at higher 

nutation angles.  At low nutation angles the terms are more 

difficult to balance due to the long length of the PMC greatly 

increasing the inertial term in the direction of nutational 

motion, 𝐼𝑝𝑦𝑦, driving up the ratio of the two moments of 

inertia.  As the nutation angle increases, length decreases, 

reducing the ratio of the inertial terms.  This high nutation 

angle regime provides an opportunity to reasonably 

counterbalance the PMC to eliminate the dynamic moment 

generated and will be utilized in the next section.  It is clear 

Figure 7. PMC approximate size across varying 

nutation angles  

Figure 8. PMC inertial ratio and geometric ratio 

require to be equivalent for dynamic moment 

cancellation 

Figure 9. Example PMC geometry at high nutation 

angle and high difference in meshing gear tooth numbers 
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that it is possible to generate PMC geometries with high 

differences in tooth number and under the constraint  
𝑁1

𝑁2
≤

1

2
, 

but to provide reasonable solutions much higher nutation 

angles are required. 

Addition of Counterbalance to PMC to Negate Dynamic 

Moment 

As discussed in the previous section it was desired to provide 

a counterbalance to the PMC that would be capable of altering 

the mass moment of inertia terms so that (𝑅𝑂
2 + 𝑅𝑖

2) ≫  𝐿2 

subject to certain tooth number constraints.  Geometry largely 

drives the ability to counterbalance the PMC.  In order to 

accurately develop a counterbalance a more accurate 

representation of the PMC mass moment of inertia terms 

based upon pitch cone geometry was needed.  To accomplish 

this, the PMC body was split into three sections that varied in 

size based on pitch cone geometry and represented the 

sections of the PMC with the gear face width taken into 

account.  These generalized sections are shown in Figure 10.  

Solid lines denote the PMC body and are numbered one to 

three along with a full cutaway image of a PMC body showing 

the pitch cone angles, pitch diameters, and gear tooth face 

widths mark FW1 and FW2.   

With a more realistic inertial body generated, mass moments 

of inertia can once again be found for a PMC body now with 

some assumed counterbalance term included that impacts the 

overall mass moment of inertia: 

𝐼𝑃𝑀𝐶

= [

𝐼𝑥𝑥 + 𝐼𝑐𝑏𝑥𝑥 0 0
0 𝐼𝑦𝑦 + 𝐼𝑐𝑏𝑦𝑦 0

0 0 𝐼𝑧𝑧 + 𝐼𝑐𝑏𝑧𝑧

] 
(20) 

with the terms denoted by a cb belonging to the PMC 

counterbalance.  Based on Figure 8, we know that the 

counterbalance must increase 𝐼𝑝𝑧𝑧 with respect to 𝐼𝑝𝑦𝑦, in 

addition it is assumed the geometry of the counterbalance 

must be some axisymmetric shape.  It was decided that a 

hollow cylinder centered about the nutation point would be 

used, of which the inner radius, Ri, the outer radius, Ro, and 

the length, L, could be altered.  To balance the PMC, the shape 

of this cylinder would need a large inner and outer radius to 

increase 𝐼𝑝𝑧𝑧 and a short length as to not increase 𝐼𝑝𝑦𝑦 

significantly.  Figure 11 depicts a diagram of what this 

counterbalance would roughly look like in location and with 

regards to the PMC body as well as its defining geometry 

parameters.   

It was desired for the mass of the counterbalance to be as low 

as possible while still altering the mass moment of inertia 

sufficiently to eliminate the dynamic moment generated 

through alteration of its inner radius, outer radius, and length.  

This lead to the development of a tool in Matlab that sought 

to minimize counterbalance mass while providing the 

nonlinear constraint that the dynamic moment was equal to 

zero.  Additional constraints made sure the outer radius of the 

counterbalance was greater than the inner radius, and the 

Figure 10. PMC body inertial body showing nutation 

angles, dimensions, and close-up of inertial 

subcomponents  

Figure 11. PMC body with counterbalance 

attachment and dimensions shown 
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inner radius of the counterbalance had to be outside of the 

PMC as to not impact the internal space for bearings.  

A test case was run to determine if the tool could provide 

geometries that were capable of balancing the PMC body.  

The previous example of teeth numbers (20, 50, 78 and 32) 

were used to maintain the constraint that 
𝑁1

𝑁2
≤

1

2
 and provide 

a reduction ratio of 40:1.  The face widths of the gears were 

set at one inch and the minimum length of the counterbalance 

was restricted to one inch as well. The minimum limit on the 

difference between inner and outer radius was set at 1 in.  The 

radii of the counterbalance were allowed to have a max value 

of 500 inches to attempt to achieve full dynamic moment 

elimination.  An upper limit of 500 inches radius is unrealistic 

but was require to numerically find solutions at lower nutation 

angles. The tool was executed and produced inner radii, outer 

radii, and total lengths across a range of nutation angles for 

the counterbalance that generated zero dynamic moment.  The 

geometry results for the counterbalance are plotted in Figure 

12 and the PMC total mass for the three body inertial model 

and the counterbalance mass is plotted in figure 13.  It must 

be noted that the masses shown are exceedingly high, 

especially at low nutation angles when the PMC length is 

unrealistically long.  These large masses are due to the 

generalized PMC body used having no mass optimization.  

Additionally, gear teeth numbers and face widths also have 

not been optimized for this configuration. 

The counterbalance tool is capable of finding a solution across 

a wide range of nutation angles.  Figure 14 shows that 

counterbalancing is achieved with only 30-40% of the PMC 

weight for the majority of nutation angles.  The geometry of 

the counterbalance is a radially large cylinder with a short 

axial length, as was predicted based on the ratio of inertial 

terms plotted in Figure 8.  The inner radius, in what appears 

to be all cases, minimizes its distance from the outer radius, 

and the length remains at its minimum value of one inch 

across all solutions.  A feature to take note of on these plots is 

the spike in counterbalance weight, and radius around 37 

degrees nutation followed by a flat line.  Beyond this point the 

tool is unable to solve for a scenario in which the 

counterbalance is able to fully negate the dynamic moment 

generated.  The solver defaults to providing a solution of the 

minimum mass possible for the counterbalance based upon 

minimum bounds placed on the variables, but no longer 

negates the dynamic moment.  This inability to negate the 

dynamic moment at higher nutation angles makes sense due 

to the earlier assumption that for 
𝑁1

𝑁2
≤

1

2
 to apply, cos(β) had 

to be near a value of 1.  With the increased nutation angle 

cos(β) strays further from 1, the geometry deviates from the 

feasible range, and the solver fails.  Despite this, it is clear that 

for a generalized PMC geometry it is possible to sufficiently 

alter the mass moment of inertia such that the dynamic 

moment generated is canceled.  The counterbalancing can be 

achieved with less than a 50% increase in PMC mass, limiting 

additional weight to the transmission.  Counterbalancing 

addresses a critical PMC bearing loading concern raised by 

Figure 13. Mass of counterbalance with relation to 

PMC mass 

Figure 14. Ratio of counterbalance mass to PMC 

mass 

Point at which solver fails 

Figure 12. Dimensions of counterbalance required to 

negate dynamic moment 
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previous authors, and by previous sections of this work.  The 

additional mass achieving this is offset in the reduced mass of 

the bearings required to manage pericyclic transmission 

loads. 

Centrifugal Force and Moment Due to Offset COG 

One additional loading term on the PMC that must be 

acknowledged is due to centrifugal loads generated when the 

center of gravity(COG) of the PMC is offset from the PMC 

nutation center.  Due to the tooth difference between the two 

sides of the PMC and the difference in tooth number of the 

gears they mesh with, the PMC will inevitably be 

asymmetrical causing a shift in the COG from the nutation 

center.  This means that the COG will have an orbit about the 

input’s rotational axis at a speed equivalent to the angular 

velocity of the PMC body times a rotation matrix about the x 

axis of the PMC by a negative value of the nutation angle. 

𝜔𝑐 =

 

{
 
 

 
 

0

−𝜔𝑖𝑛 ∗ sin(𝛽) ∗ cos(𝛽) + sin(𝛽) ∗ 𝜔𝑖𝑛 ∗ (cos(𝛽) − (
𝑁1

𝑁2
))

𝜔𝑖𝑛 ∗ sin(𝛽) ∗ sin(𝛽) + cos(𝛽) ∗ 𝜔𝑖𝑛 ∗ (cos(𝛽) − (
𝑁1

𝑁2
))
}
 
 

 
 

  (21) 

Where the rotational component of 𝜔𝑐, 𝜔𝑐𝑧, is the speed at 

which the center of gravity is orbiting.  This generates a 

centrifugal force which is depicted in Figure 15 along with the 

COG orbital path, and is calculated by: 

𝐹𝑐 = 𝑀𝑃𝑀𝐶 ∗ 𝜔𝑐𝑧
2 ∗ 𝑑 ∗ sin (𝛽) (22) 

where 𝑀𝑃𝑀𝐶 is the mass of the PMC, and the term, 𝑑 ∗ sin(𝛽), 
is the radius of the orbit path the PMC center of gravity takes.  

𝐹𝑐 is broken down into an axial and a radial load acting on the 

PMC body when returned to the PMC frame of reference.  The 

axial load 𝐹𝑐𝑎  is reacted by PMC axial bearing.  The radial 

load 𝐹𝑐𝑟, and resulting moment generated by this radial load 

and the cross product of the offset distance of the COG, 𝑑, 

from the PMC center, is reacted by the radial bearings.   

This centrifugal load is minimized if the COG is aligned with 

the nutation center.  To reduce the COG offset magnitude, and 

consequentially the centrifugal force generated, a set of gear 

tooth numbers should be selected which limits the difference 

in size between the RCM and output side of the PMC.  This 

is highly effective in balancing the two side’s masses and 

further reduces high, speed related, loads applied to the PMC 

bearings.  Tooth numbers in the remainder of this work will 

be selected such that N2 and N3 are very close in value and 

any resulting offset COG will be negated via an addition of 

mass that has negligible impact on the moment of inertia of 

the PMC.  

STATIC MODEL OF DUAL PMC 

PERICYCLIC TRANSMISSION 

With a solution to manage the dynamic load in place, a static 

solver was built in Matlab that could be used to provide an 

estimated load for each bearing and gear mesh.  The static 

solver designed was for an internal input shaft driven, fixed 

RCM, dual PMC pericyclic transmission, a schematic of 

which is seen in Figure 16.  The bodies within the system were 

assumed to be completely rigid and symmetric, and the gear 

meshes were modeled as point loads at the center of the gear 

face widths. It was also assumed that power flowed through 

the system was split evenly between the two PMCs.  Each 

PMC was assumed to have two bearings, one of which 

provides a radial support, the other a radial and axial support.  

The bearings are spaced on either side of the nutation center 

three quarters of the distance out to the gear mesh on their 

respective side so that they are wholly within the PMC while 

taking advantage of a long lever arm.  The output body, 

comprised of the two output gears back to back, and input 

shaft also have two bearings with the same configuration as 

the PMC (one reacting to a radial load, and the other reacting 

to an axial and radial load) with bearings placed 

symmetrically about their centers.  Each radial bearing 

provides two unknown forces, a reaction force in the x and a 

reaction force in the y direction of corresponding bodies.  

Bearings taking on an additional axial load provide an 

additional unknown reaction force in the z direction for 

corresponding bodies.  For the gear mesh reaction forces, only 

the magnitude of the tangential force transmitting torque was 

treated as an unknown.  The remaining mesh forces in the x, 

y and z directions were based upon bevel gear pitch cone 

geometry. For a single unknown mesh force in vector form, 

say for the gear mesh force between the first PMC and RCM 

gear, could be written as: 

𝐹1⃗⃗  ⃗  = {

𝑓1
𝑓1 ∗ tan(𝛼1) ∗ cos (𝛽2)

𝑓1 ∗ tan(𝛼1) ∗ sin (𝛽2)
} (23) 

Where 𝑓1 is the unknown tangential force term, 𝛼1 is the 

pressure angle of the gear mesh, and 𝛽2 is the bevel gear pitch 

cone angle of the PMC body.   

Figure 15. Orbit of PMC offset center of gravity and 

resulting centrifugal force generated 
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The 8 bearings in the system provide a total of 20 unknowns, 

the 4 gear meshes provide an additional 4 unknowns, and the 

requirement to derive the output torque from the system (input 

power and torque are selected as desired) adds an additional 

unknown leading to a total of 25 unknowns to be solved for 

with 4 bodies.  These 4 bodies only provide a total of 6 

equations each (3 force summation and 3 moment 

summations about each body) leading to 24 equations to solve 

for 25 unknowns.  Due to the symmetry in the system and the 

assumption that power flows evenly, the gear mesh forces on 

the output bodies are equal and opposite.  No net axial force 

is applied to the output body.  While this would not be realistic 

for a real model of the pericyclic load train due to 

misalignments and asymmetries creating uneven power flow 

between the two PMC’s, for this basic model to derive bearing 

load estimates it was determined sufficient.  Without a net 

axial force applied to the output, one unknown is removed 

from the system.  This simplification leads to 24 unknowns to 

solve for and 24 equations to solve them with making a 

statically determinate system.  

With this static simulation developed, a test case was run 

using the model.  The test case transmission had an input 

power of 1000 HP and an input speed of 12,000 rpm being 

driven into the pericyclic drive.  Teeth numbers of 30, 75, 78, 

and 32 were utilized due to the desire to diminish any 

centrifugal loads by having the smallest difference between 

N2 and N3 possible while still providing a reduction ratio of 

40:1.  PMC pitch cone geometries were calculated, inertial 

bodies were generated, and counterbalance solutions 

minimizing additional mass were found to diminish the 

dynamic moment generated for a range of nutation angles.  

The PMC masses and inertial bodies including a 

counterbalance were fed into the static solver long with their 

corresponding geometries and gear mesh force locations and 

bearing loads were resolved.  While the solver output all 

transmission bearing loads, this paper would like to focus 

specifically on the PMC bearings load results.   

Plotted in Figure 17 are the PMC bearing radial and axial 

loads for this test case.  The first major characteristic to take 

note of is the sharp rise in radial loads around 37 degrees 

nutation but the lack of such a feature in the axial loads.  As 

discussed before, this is due to the counterbalance tool being 

Figure 16.  Cutaway view of dual PMC pericyclic with internal input shaft displaying various rigid 

bodies based upon pitch cone geometry and using circles to depict PMC bearing locations 

Figure 17. Radial and axial loads on PMC bearings 

for 1000 HP counterbalanced transmission 
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unable to balance the PMC beyond a certain nutation angle 

and the dynamic moment reemerging and driving up PMC 

radial loads.  Due to axial loads being unable to react to the 

dynamic moment, they do not observe increases in loads with 

the reemerged dynamic moment.  The difference between 

PMC 1 and PMC 2 in loading trends is due to one input shaft 

bearing taking on both radial and axial loads, and forcing 

asymmetry into the PMC loading.   

Overall magnitudes of loads are high, but reasonable for the 

bearing size envelope available.  The allowable size of the 

PMC bearing versus the speed of the bearing is plotted in 

Figure 18.  At 30 degrees nutation angle, the highest radial 

load for any bearing is approximately 55,000 lbs, its 

maximum outer diameter is around 11 inches, and it would be 

required to operate at slightly less than 6,500 rpm.  Depending 

upon bearing type selection, operating speed could be a 

concern for this particular scenario. In regards with loads, 

55,000 lbs is manageable for aerospace grade bearings of this 

size.  Optimization of bodies with regards to mass could 

decrease overall size of the PMC and counterbalance.  In all 

it was shown that use of counterbalances for the PMC body is 

an effective means of diminishing exceedingly high bearing 

loads due to dynamic losses, decreasing bearing losses, and 

increasing bearing life for an additional mass cost for high 

speed pericyclic operation.  

CONCLUSIONS 

Within this work the pericyclic design space was 

explored with a focus on limiting the loading of the PMC 

bearings.  The geometry of the PMC was examined along with 

the impact of nutation angle on overall size and shape.  

Angular velocity components of the PMC were developed 

and the method through which power is delivered from the 

input to the PMC via the PMC bearings was discussed.  The 

angular velocities were then used to show the expected 

dynamic loads of the PMC body due to the complex nutation 

and rotation while moving in and out of mesh.  The terms that 

made up this dynamic load were examined more closely to 

determine if there was a discernable method to negate its 

generation.  Tooth number selection was shown to have great 

impact on the dynamic moment generated due to approximate 

inertial terms.  Inspection of these terms lead to the desire to 

have 
𝑁1

𝑁2
≤

1

2
, drastically diverging from conventional tooth 

number selections.  Through this understanding a 

counterbalancing method was able to be developed and 

applied that could alter the mass moment of inertia to negate 

the generation of the dynamic moment.  It was shown that for, 

at most, a 50% increase in PMC weight the dynamic moment 

of a 40:1 reduction ratio pericyclic could be negated. The 

possibility of centrifugal loading and its impact on PMC 

bearings loads was discussed and tooth numbers altered to aid 

in the balancing of the two halves of the PMC.  Finally a static 

solver was utilized to determine PMC bearing loads in a 

counterbalanced configuration.  Thanks to the removal of the 

dynamic moment, loads for the given PMC size were found 

to be within a reasonable range for the PMC bearings.  Design 

space exploration within this paper revealed that tooth 

numbers and therefore pericyclic transmission design differ 

greatly when designing for decreased bearing loads as 

opposed to gear tooth loads.  Highly conformal pitch cone 

geometries attained with low nutation angles and small tooth 

number differences in mesh, while good for gear design, lead 

to high dynamic loads when used in rotorcraft designs.  Less 

conformal meshes provide more space for bearings, longer 

effective lever arms to react to torques, higher nutation angles 

and nutational speeds decreasing PMC bearing static loads, 

and a larger design space with which the transmission is 

counterbalanced reasonably.     

Recommendations for future work would include the 

incorporation of this work that sought to limit critical bearing 

loads with gear mesh load work so that a balance between 

load sharing between teeth, and low bearing loads could be 

found.  This work showed that higher nutation angles and less 

conformal gear pitch cones (causing fewer teeth to be 

simultaneously in mesh) lead to lower PMC bearing loads.  

Understanding what type of gear tooth sizes are required to 

handle the loads associated with these geometries will be a 

critical design challenge.  Higher fidelity geometries and 

more constraints on transmission design to ensure bodies and 

shafts are not critically loaded would also be valuable work 

that would help aid in further maturation and development of 

the transmission.  Finally models that take into account 

bearing and mesh stiffness would be valuable to examine if 

deviation from the desired nutation angle would show a 

significant reemergence of the counterbalanced dynamic 

moment.  
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