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Abstract. There is a well known degeneracy between the enhancement of the growth of
large-scale structure produced by modified gravity models and the suppression due to the
free-streaming of massive neutrinos at late times. This makes the matter power-spectrum
alone a poor probe to distinguish between modified gravity and the concordance ΛCDM model
when neutrino masses are not strongly constrained. In this work, we investigate the potential
of using redshift-space distortions (RSD) to break this degeneracy when the modification to
gravity is scale-dependent in the form of Hu-Sawicki f(R). We find that if the linear growth
rate can be recovered from the RSD signal, the degeneracy can be broken at the level of
the dark matter field. However, this requires accurate modelling of the non-linearities in the
RSD signal, and we here present an extension of the standard perturbation theory based
model for non-linear RSD that includes both Hu-Sawicki f(R) modified gravity and massive
neutrinos.
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1 Introduction

Modifications to Einstein’s theory of General Relativity (GR) can be considered when search-
ing for an explanation of the late-time acceleration [1, 2]. The simplest class of models, known
as scalar-tensor theories [3–5], introduce a new scalar field that causes the required acceler-
ation. This new scalar field also couples to matter, leading to a so-called fifth force. Such
models typically invoke a screening mechanism to ensure that the fifth force would become
negligible in high density environments, and thus not be observable in solar system tests.
However, in other environments the fifth force is present and can enhance structure forma-
tion. This enhancement can be used to constrain such scalar-tensor theories of modified
gravity (MG) with large-scale structure observations, and this is indeed a key goal of upcom-
ing large-scale structure surveys such as Euclid [6], DESI [7], WFIRST [8], LSST [9], and
SKA [10].

In this paper we will consider f(R) gravity [11, 12], and in particular the commonly
studied Hu-Sawicki variant of f(R) [13]. This model has been well studied with N-body simu-
lations as it is well understood theoretically and offers a phenomenology that is representative
of a broad range of modified gravity models.

In GR with cold dark matter the growth rate of matter perturbations is scale-independent.
A key signature of modified gravity is that the linear growth rate can be scale-dependent.
However, a vital but often overlooked complication when searching for signatures of modified
gravity in large-scale structure is the suppression of structure growth due to massive neutri-
nos. Neutrinos were first shown to have mass in observations of neutrino flavour oscillations
[14, 15], the presence of which demand that at least two of the neutrino states are massive
[16]. Even though particle physics experiments do not yet tell us the absolute mass of each
of the three mass eigenstates, they do allow strong constraints to be placed on the difference
in mass between the states, and these imply that at least one of the mass eigenstates has
a mass mν & 0.05 eV [17]. As a consequence of having mass, the matter-radiation equality
time will be delayed and the neutrinos will not cluster at scales below their free-streaming
length λfs [18]. The delay to the time of matter-radiation equality lowers the amplitude of
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the matter perturbations at the start of matter-domination, and the free-streaming of mas-
sive neutrinos causes the dark matter perturbations to feel a reduced gravitational potential
below λfs and thus cluster less strongly than in a model with the same value of the matter
density parameter but only massless neutrinos. The combination of these two effects leads
to a scale-dependent suppression of structure growth; a signature which can be used to con-
strain the neutrino masses if it can be measured by the previously mentioned large-scale
structure surveys [19–26], even in models beyond ΛCDM that affect structure growth in a
scale-independent way [27].

However, with the potential for scale-dependent enhancement of structure formation
from modified gravity and the scale-dependent suppression due to massive neutrinos, there is
a risk of degeneracy whereby large-scale structure in a universe with a strong modification to
gravity and heavy neutrinos can be difficult to distinguish from that of a universe with GR
and light neutrinos [28–34]. This degrades the ability of surveys to achieve their twin goals
of testing gravity and constraining the neutrino masses in any theories of gravity beyond
GR. Indeed, it has been shown that the non-linear matter power spectrum [30] and halo
mass function [35] in f(R) models are difficult to distinguish from their equivalents in GR
when the neutrino masses are allowed to vary. The DES Collaboration considers neutrino
mass and extensions to GR in the same analysis [36], although they only state the resulting
constraints on the MG parameters and not the neutrino masses. There are some promising
signs that certain observables may be better at reducing or even breaking this degeneracy,
such as higher-order weak lensing statistics [37] and weak lensing tomographic information
at multiple redshifts [38]; as well as techniques that are superior at distinguishing models
such as machine learning [39, 40].

A different observable that has degeneracy breaking potential is that of redshift-space
distortions (RSD) [41]. RSD occur when the distances to tracers are computed using their
observed redshifts without accounting for the effect of the tracers’ peculiar velocities on the
redshifts which adds to the contribution from the Hubble flow. On linear scales this results
in a slight squashing along the line-of-sight [42], whereas there is a strong stretching along
the line-of-sight at non-linear scales commonly known as the Fingers-of-God (FoG) effect
[43]. For combinations of MG parameters and neutrino masses whose enhancement and
suppression of structure growth produce matter power spectra that are difficult to differentiate
between, the structure growth rate can still be different in each case and allow for models to
be distinguished between. It has recently been shown that growth rate information imprinted
in velocity statistics in real-space can be used to break the degeneracy [44]. However, real-
space velocity statistics are not directly observable. Fortunately, because of the velocity
information encoded in them, RSD observations can be used to extract the linear growth
rate of structure f . However, in order to extract f and break the degeneracy, it is necessary
to accurately model the non-linearities of RSD with MG and massive neutrinos.

In this paper, we extend the cosmological perturbation theory code Copter [45] to
include the effects of massive neutrinos in addition to those of modified gravity allowing us
to accurately model non-linear RSD in scenarios with Hu-Sawicki f(R) gravity and non-zero
neutrino masses. We build on MG-Copter, the modified version of Copter developed in [46],
which is itself based on the approach presented in [47].

We validate this implementation against simulations using the COmoving Lagrangian
Acceleration (COLA) method [48], which is a fast approximate simulation method, and then
investigate whether the degeneracy between the two effects is broken by RSD at the level of
the dark matter field.
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The paper is organised as follows. In Section 2 we explain our implementation of mod-
ified gravity and massive neutrinos in the Standard Perturbation Theory (SPT) formalism
and MG-Copter code. In Section 3, we show the results of tests validating our implementation
against simulation results. In Section 4 we use our new implementation to investigate the
degeneracy and then conclude in Section 5.

2 Implementation

In order to model the combined effect of modified gravity and massive neutrinos on real-
and redshift-space power spectra with low computational expense, it is necessary to include
both effects in a semi-analytical code such as Copter which computes large-scale structure
observables using perturbation theory. For the redshift-space quantities, Copter depends on
the TNS model of redshift-space distortions which is named after the authors of [49] (Taruya,
Nishimichi, and Saito).

2.1 MG-Copter and the TNS model

MG-Copter [46] solves the equations of Standard Perturbation Theory (SPT) to acquire the
real-space power spectra up to 1-loop order based on the approach developed by [47].

Starting from the continuity and Euler equations, assuming fluid quantities to be ir-
rotational such that velocity field ~v can be expressed in terms of the velocity divergence

θ =
(
~∇ · ~v

)
/aH, and transforming to Fourier space yields

a
∂δ(~k)

∂a
+ θ(~k) = −

∫
d3~k1d

3~k2

(2π)3
δD

(
~k − ~k1 − ~k2

)
α(~k1,~k2)θ(~k1)δ(~k2) , (2.1)

a
∂θ(~k)

∂a
+

(
2 +

aH ′

H

)
θ(~k)−

(
k

aH

)2

Φ(~k)

= −1

2

∫
d3~k1d

3~k2

(2π)3
δD

(
~k − ~k1 − ~k2

)
β(~k1,~k2)θ(~k1)θ(~k2) , (2.2)

where a = 1/(1 + z) is the scale factor, y′ = ∂y/∂a and the kernels α and β are given by

α(~k1,~k2) = 1 +
~k1 · ~k2

|~k1|2
, (2.3)

β(~k1,~k2) =
(~k1 · ~k2)|~k1 + ~k2|2

|~k1|2|~k2|2
. (2.4)

The Poisson equation completes the above modified continuity and Euler equations

−
(
k

aH

)2

Φ(~k) =
3Ωm(a)

2
δ(~k) , (2.5)

where Ωm(a) = 8πGρm/3H
2. We want the nth order solutions of Eqs. (2.1) and (2.2) to be

of the form

δn(~k, a) =

∫
d3~k1 . . . d

3~knδD(~k − ~k1...n)Fn(~k1, . . . ,~kn, a)∆(~k1) . . .∆(~kn) , (2.6)
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θn(~k, a) =

∫
d3~k1 . . . d

3~knδD(~k − ~k1...n)Gn(~k1, . . . ,~kn, a)∆(~k1) . . .∆(~kn) , (2.7)

where ~k1...n = ~k1 + . . . + ~kn. Inserting these forms of the solutions into Eqs. (2.1) and (2.2)
yields a generalised system of equations for the nth order kernels [47]

L̂

[
Fn(~k1, . . . ,~kn)

Gn(~k1, . . . ,~kn)

]
=

n−1∑
j=1

[
−α(~k1...j ,~kj+1...n)Gj(~k1, . . . ,~kj)Fn−j(~kj+1, . . . ,~kn)

−1
2β(~k1...j ,~kj+1...n)Gj(~k1, . . . ,~kj)Gn−j(~kj+1, . . . ,~kn)

]
, (2.8)

where

L̂ =

[
a d
da 1

3Ωm
2 a d

da +
(

2 + aH′

H

)] . (2.9)

MG-Copter solves this system of equations to compute the kernels Fi and Gi. The power
spectra up to 1-loop are given as

P 1−loop
ij (k) = PL

ij(k) + P 13
ij (k) + P 22

ij (k) , (2.10)

where the 1-loop corrections are defined by〈
x2(~k)y2(~k′)

〉
= (2π)3δD(~k + ~k′)P 22

xy (k) ,〈
x1(~k)y3(~k′) + x3(~k)y1(~k′)

〉
= (2π)3δD(~k + ~k′)P 13

xy (k) , (2.11)

where x and y can be δ or θ. Working these through, the final expressions for the 1-loop
corrections in terms of the z = 0 linear power spectrum P0(k) = PL(k, z = 0) are, for the 22
correction,

P 22
δδ (k) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1
P0(kr)P0(k

√
1 + r2 − 2rx)F 2

2 (k, r, x)dx , (2.12)

P 22
δθ (k) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1
P0(kr)P0(k

√
1 + r2 − 2rx)F2(k, r, x)G2(k, r, x)dx , (2.13)

P 22
θθ (k) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1
P0(kr)P0(k

√
1 + r2 − 2rx)G2

2(k, r, x)dx , (2.14)

while for the 13 correction we have

P 13
δδ (k) =2

k3

(2π)2
F1(k)P0(k)

∫ ∞
0

r2P0(kr)F3(k, r, x)dr , (2.15)

P 13
δθ (k) =

k3

(2π)2
F1(k)P0(k)

∫ ∞
0

r2P0(kr)G3(k, r, x)dr

+
k3

(2π)2
G1(k)P0(k)

∫ ∞
0

r2P0(kr)F3(k, r, x)dr , (2.16)

P 13
θθ (k) =2

k3

(2π)2
G1(k)P0(k)

∫ ∞
0

r2P0(kr)G3(k, r, x)dr . (2.17)
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With the SPT real-space power spectra computed up to 1-loop order, MG-Copter can then
input these to the TNS model to calculate the redshift-space power spectrum P (s)(k).

The TNS model for the redshift-space power spectrum P (s) as a function of scale k
and line-of-sight (LoS) angle parameter µ = cos(θ) is given by Eq. (18) of [49], which we
reproduce here with subtle changes due to the different definition of θ:

P (s)(k, µ) = DFoG [kµσv]
{
Pδδ(k)− 2µ2Pδθ(k) + µ4Pθθ(k) +A(k, µ) +B(k, µ)

}
, (2.18)

where DFoG is the Fingers-of-God damping function which we will discuss later. It is gen-
erally a function of k, µ, and the velocity dispersion σv. The power spectra Pδδ(k), Pδθ(k),
and Pθθ(k) correspond to the density auto-correlation, density-velocity divergence cross cor-
relation, and the velocity divergence auto-correlation respectively. A(k, µ) and B(k, µ) are
correction terms given by

A(k, µ) = −kµ
∫

d3~p

(2π)3

pz
p2

{
Bσ(~p,~k − ~p,−~k)−Bσ(~p,~k,−~k − ~p)

}
, (2.19)

B(k, µ) = (kµ)2

∫
d3~p

(2π)3
F (~p)F (~k − ~p) , (2.20)

where Bσ is the cross bispectrum defined by〈
θ(~k1)

{
δ(~k2)− k2

2z

k2
2

θ(~k2)

}{
δ(~k3)− k2

3z

k2
3

θ(~k3)

}〉
= (2π)3δD(~k1 + ~k2 + ~k3)Bσ(~k1,~k2,~k3) , (2.21)

and F (~p) is defined as

F (~p) =
pz
p2

{
Pδθ(p)−

p2
z

p2
Pθθ(p)

}
. (2.22)

Throughout we use an exponential form for the Fingers-of-God damping factor:

DFoG [kµσv] = exp
(
−k2µ2σ2

v

)
. (2.23)

The velocity dispersion σv is a free parameter and needs to be fitted to some other P (s) data,
for example from simulations as we do here. To do this, we minimise the likelihood function

−2 lnL =
∑
n

∑
l,l′=0,2

(
P sl, Copter(kn)− P sl, COLA(kn)

)
Cov−1

l,l′ (kn)
(
P sl′, Copter(kn)− P sl′, COLA(kn)

)
(2.24)

for the first two multipoles. Expressions for the covariance matrix between the different
multipoles Covl,l′ are given in Appendix C of [49]. We do not consider non-Gaussianity in this
covariance but we do include the effect of shot-noise. For the validation of our implementation
of massive neutrinos in MG-Copter presented in Section 3 we assume an ideal survey with
survey volume Vs = 10 Gpc3/h3 and galaxy number density n̄g = 4× 10−3h3/Mpc. For the
study of the degeneracy in Section 4, we want to model a slightly more realistic scenario,
so we assume a DESI-like survey with Vs and n̄g as given in Table 1 and redshift bin width
∆z = 0.2. These values are computed using the information for emission line galaxies (ELGs)
in Table V of [50].

Thus the TNS model can be used to compute P (s)(k, µ) with the input of Pδδ, Pδθ, Pθθ
at 1-loop order from MG-Copter.
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z Vs (Gpc3/h3) n̄g (h3/Mpc3)

0.5 3.40 2.95×10−4

1.0 7.68 5.23×10−4

1.5 10.14 1.71×10−4

Table 1: Survey parameters for a DESI-like survey computed from the information for emis-
sion line galaxies (ELGs) in Table V of [50]. These parameters are used in the computation
of the covariance matrices for fitting σv in MG-Copter in the study of the degeneracy in
Section 4.

2.2 Adding modified gravity

Modified gravity models, like the f(R) gravity model we consider here, have been previously
added to Copter in [46], resulting in MG-Copter. The 1-loop real-space power spectra are
affected by the inclusion of modified gravity in SPT, but the TNS model of Eq. (2.18) is still
applicable without changes. We shall reproduce here the essentials of the implementation of
modified gravity in the SPT part of MG-Copter.

The modifications to gravity can be included in the Poisson equation, which up to 3rd

order becomes

−
(
k

aH

)2

Φ(~k) =
3Ωm(a)

2
δ(~k)µ(k, a) + S(~k) , (2.25)

where µ(k, a) = Geff(k, a)/G is an effective Newton’s constant1 and the non-linear source
term S(~k) up to 3rd order is

S(~k) =

∫
d3~k1d

3~k2

(2π)3
δD(~k − ~k12)γ2(~k,~k1,~k2, a)∆(~k1)∆(~k2)

+

∫
d3~k1d

3~k2d
3~k3

(2π)3
δD(~k − ~k123)γ3(~k,~k1,~k2,~k3, a)∆(~k1)∆(~k2)∆(~k3) . (2.26)

While the effective Newton’s constant µ(k, a) is generally responsible for the (scale-dependent)
growth of linear perturbations, at the fully non-linear level modified gravity models typically
include a screening mechanism that will affect the growth of non-linearities, and the γ2 and
γ3 terms provide the leading order description of this screening in perturbation theory.

Using the same form for the nth order solutions as in Eqs. (2.6) and (2.7), the new
system of equations for the nth order kernels is

L̂

[
Fn(~k1, . . . ,~kn)

Gn(~k1, . . . ,~kn)

]
=

n−1∑
j=1

[
−α(~k1...j ,~kj+1...n)Gj(~k1, . . . ,~kj)Fn−j(~kj+1, . . . ,~kn)

−1
2β(~k1...j ,~kj+1...n)Gj(~k1, . . . ,~kj)Gn−j(~kj+1, . . . ,~kn)−Nn(~k,~k1, . . . ,~kn)

]
,

(2.27)

where

L̂ =

[
a d
da 1

3Ωm
2 µ(k, a) a d

da +
(

2 + aH′

H

)] , (2.28)

1Not to be confused with the line-of-sight angle parameter µ, which will always be presented without
arguments.
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and

N2 =γ2(~k,~k1,~k2)F1(~k1)F1(~k2) , (2.29)

N3 =γ2(~k,~k1,~k23)F1(~k1)F2(~k2,~k3) + γ2(~k,~k12,~k3)F2(~k1,~k2)F1(~k3)

+ γ3(~k,~k1,~k2,~k3)F1(~k1)F1(~k2)F1(~k3) . (2.30)

In this work we investigate Hu-Sawicki f(R) gravity, which has a single free parameter
|fR0|. Hu-Sawicki f(R) gravity produces an enhanced, scale-dependent growth of density
perturbations relative to GR, but the built-in chameleon screening mechanism ensures that
the modifications become negligible in high density environments (which typically coincide
with small scales). Hu-Sawicki f(R) only becomes active at late times, and thus the mod-
ifications to GR are negligible in the early Universe. For this theory, the extra terms in
Eq. (2.25) are given as

µ(k, a) = 1 +

(
k

a

)2 1

3Π(k, a)
, (2.31)

γ2(k,~k1,~k2, a) =− 9

48

(
kH0

aH

)2(H2
0 Ωm0

a3

)2
(Ωm0 − 4a3(Ωm0 − 1))5

a15|fR0|2(3Ωm0 − 4)4

× 1

Π(k, a)Π(k1, a)Π(k2, a)
, (2.32)

γ3(k,~k1,~k2,~k3, a) =

(
kH0

aH

)2(H2
0 Ωm0

a3

)3
1

36Π(k, a)Π(k1, a)Π(k2, a)Π(k3, a)Π(k23, a)

×
[
−45

8

Π(k23, a)

a21|fR0|3

(
(Ωm0 − 4a3(Ωm0 − 1))7

(3Ωm0 − 4)6

)
+H2

0

(
9

4a15|fR0|2
(Ωm0 − 4a3(Ωm0 − 1))5

(3Ωm0 − 4)4

)2
]
, (2.33)

where

Π(k, a) =

(
k

a

)2

+
H2

0 (Ωm0 − 4a3(Ωm0 − 1))3

2|fR0|a9(3Ωm0 − 4)2
. (2.34)

2.3 Adding massive neutrinos

We have added support for massive neutrinos to the code MG-Copter developed in [46].
Note that massive neutrinos were also added to the original Copter code in [51] using a
similar approach. In our implementation, we follow the method of [52, 53] and include
massive neutrinos at the level of the linear real-space power spectra PL, Pδθ,L = f(k)PL, and
Pθθ,L = f2(k)PL without modifying the higher order SPT kernels. This allows us to take
PL(k) and f(k) from CAMB [54] (or MGCAMB [55, 56] for MG+mν) as input to MG-Copter; note
that a small modification to CAMB/MGCAMB is necessary to get scale-dependent growth rate
f(k) as output. This method for including massive neutrinos is general enough to handle
the various hierarchies of neutrino mass eigenstates [57], but for simplicity in the results that
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follow we have modelled the massive neutrinos as a single massive eigenstate with mass mν

and two massless eigenstates.
The free-streaming of massive neutrinos causes suppression of PL(k) relative to the case

with massless neutrinos for scales smaller than the neutrino free-streaming scale after the time
at which massive neutrinos become non-relativistic – see Fig. 1 of [58] for an example. A
linear approximation gives the amplitude of suppression to be −8fν where fν = Ων/Ωm is the
fraction of total matter in massive neutrinos [18]. Scale-dependent suppression also affects
f(k), although the amplitude of this effect is much smaller, as can be seen in Fig. 5 of [58].

The expressions for the 1-loop power spectra corrections in terms of the z = 0 linear
power spectrum P0(k) = PL(k, z = 0) were given in Section 2.1. For our implementa-
tion, we want to take PL(k, z) and f(k, z) at the intended MG-Copter output redshift from
CAMB/MGCAMB and use it as input to MG-Copter. Therefore we need to rewrite the expressions
for the 1-loop power spectra in terms of PL(k, z) instead of P0(k), using F1(k) = G1(k)/f(k, z)
and P0(k) = PL(k, z)/F 2

1 (k) = f2(k, z)PL(k, z)/G2
1(k, z). The 22 correction terms are

P 22
δδ (k) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1
PL(kr, z)PL(k

√
1 + r2 − 2rx, z)

× F 2
2 (k, r, x)

F 2
1 (kr)F 2

1 (k
√

1 + r2 − 2rx)
dx , (2.35)

P 22
δθ (k) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1
PL(kr, z)PL(k

√
1 + r2 − 2rx, z)

× f(kr, z)f(k
√

1 + r2 − 2rx, z)
G2(k, r, x)

G1(kr)G1(k
√

1 + r2 − 2rx)

× F2(k, r, x)

F1(kr)F1(k
√

1 + r2 − 2rx)
dx , (2.36)

P 22
θθ (k) =2

k3

(2π)2

∫ ∞
0

r2dr

∫ 1

−1
PL(kr, z)PL(k

√
1 + r2 − 2rx, z)

× f2(kr, z)f2(k
√

1 + r2 − 2rx, z)
G2

2(k, r, x)

G2
1(kr)G2

1(k
√

1 + r2 − 2rx)
dx , (2.37)

while the 13 correction terms are
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P 13
δδ (k) =2

k3

(2π)2
PL(k, z)

∫ ∞
0

r2PL(kr, z)
F3(k, r, x)

F1(k)F 2
1 (kr)

dr , (2.38)

P 13
δθ (k) =

k3

(2π)2
F1(k)PL(k, z)

∫ ∞
0

r2PL(kr, z)f(k, z)f2(kr, z)
G3(k, r, x)

G1(k)G2
1(kr)

dr

+
k3

(2π)2
f(k, z)PL(k, z)

∫ ∞
0

r2PL(kr, z)
F3(k, r, x)

F1(k)F 2
1 (kr)

dr , (2.39)

P 13
θθ =2

k3

(2π)2
PL(k, z)

∫ ∞
0

r2PL(kr, z)f2(k, z)f2(kr, z)
G3(k, r, x)

G1(k)G2
1(kr)

dr . (2.40)

Note that in these expressions the only terms to contain massive neutrinos are PL and f ;
all of the kernels Fi and Gi are unmodified. The A and B terms written in Eqs. (2.19)
and (2.20) are also computed as convolutions of two linear power spectra with kernels, and
thus are rewritten using the same method as for P 13 and P 22. We have implemented these
equations in MG-Copter.

3 Validation

In order to validate our implementation of massive neutrinos in the MG-Copter code, we have
tested its output against results from the fast, approximate N-body code MG-PICOLA, which is
a modified version of L-PICOLA [59] that includes modified gravity [60] and massive neutrinos
[61] and has been tested against full N-body simulations. In the legends of the figures that
follow we shall refer to our modified MG-Copter code simply as Copter, and the MG-PICOLA

code as COLA.
Throughout, we use paired-fixed MG-PICOLA simulations where we produce two simu-

lations with fixed amplitudes, meaning the initial amplitudes of the Fourier modes of the
density field are set to that of the ensemble average power spectrum, and paired, where the
initial modes in the second simulation are mirrored compared to those of the first [62]. This
procedure significantly reduces variance that arises from the sparse sampling of wavemodes
without the need for averaging over a large number of density field realisations, and has been
shown not to introduce a bias to the recovery of the mean properties of the Gaussian ensem-
ble, despite the fixing introducing non-Gaussianity [63]. However, we also ran five additional
MG-PICOLA simulations for each model with randomised realisations of the initial density field.
The standard deviation in the power spectra of these additional five simulations is used for
the error bars in the figures below unless explicitly stated otherwise. The modified gravity
model considered here is the Hu-Sawicki f(R) model, which has one free parameter |fR0| and
we refer to |fR0|= 10−5 and |fR0|= 10−4 as F5 and F4 respectively. The velocity divergence
field θ has been computed using the DTFE code [64]. The cosmological parameters used in
this paper are the same as in [30]; h = 0.671, Ωm = 0.3175, Ωb = 0.049, As = 2.215× 10−9,
and ns = 0.966.

Note that a recent version update of MGCAMB improved the handling of massive neutrinos
[65]. Although our results were produced using the previous version of MGCAMB, we have
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Figure 1: Real-space non-linear power spectra for various gravity models and neutrino masses at
z = 1. Points represent the results of paired-fixed MG-PICOLA N-body simulations, while lines are the
result of MG-Copter. The blue circles and dashed-dotted line give the density auto-correlated power
spectra Pδδ, the pink squares and dashed line give the density-velocity divergence cross-correlated
power spectra Pδθ, while the orange triangles and solid line give the velocity divergence auto-correlated
power spectra Pθθ.

verified that for the parameters we use the difference in the linear power spectrum between
the two versions is negligible.

We first study the comparison between MG-Copter and MG-PICOLA in the real-space
power spectra, in Figs. 1 to 3. Figure 1 shows the real-space non-linear power spectra at z = 1
computed with both MG-PICOLA and MG-Copter. We display the density auto-correlation
Pδδ, the velocity divergence auto-correlation Pθθ, and the density-velocity divergence cross-
correlation Pδθ, in the form k3/2Pij for ease of viewing, for GR, F5, and F4 each with 0.0eV,
0.06eV, and 0.2eV neutrinos. The error bars on the (paired-fixed) MG-PICOLA points are
the standard deviation of the 5 additional (non-paired-fixed) MG-PICOLA simulations. In all
cases, MG-Copter reproduces the results of the MG-PICOLA simulations very well up to the
start of the quasi-non-linear scale around k = 0.1 h/Mpc where perturbation theory begins
to break down. The agreement between MG-Copter and MG-PICOLA persists to larger k values
for Pθθ and Pδθ than Pδδ, which is consistent with the behaviour seen when MG-Copter was
compared to full N-body simulations in Fig. 10 of [46].

Figure 2 displays the same data but presented as the ratio of the full non-linear power
spectra to their linear components, which helps to show where the modelling of non-linearities
with MG-Copter becomes inaccurate. Figure 3 again shows the same data but presented as the
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Figure 2: As in Fig. 1 but for the ratio of the real-space non-linear power spectra to their linear
counterparts.

ratio of the power-spectra with and without massive neutrinos for both the 0.06eV and 0.2eV
neutrinos. The scale up to which MG-Copter closely follows the results of the MG-PICOLA

simulations is marginally improved due to taking the ratio between power spectra in two
models.

Next, we look at the comparison between MG-PICOLA and MG-Copter with σv fitted to
the MG-PICOLA simulations in the non-linear redshift-space power spectra in Figs. 4 to 6.
Figure 4 shows the monopole P0 and quadrupole P2 of the redshift-space power spectra
for GR, F5, and F4 gravity models each with 0.0eV, 0.06eV, and 0.2eV neutrinos. We
display the results computed from paired-fixed MG-PICOLA simulations and MG-Copter with
the TNS velocity dispersion parameter σv fitted to the MG-PICOLA simulations up to k =
0.15 h/Mpc in the form k3/2Pi(k); the figure includes the best-fitting values of σv (expressed
in RSD displacement units Mpc/h) and the reduced χ2 for each model. The error bars
on the MG-PICOLA points are taken from the inverse covariance matrices used in the σv
fitting procedure, whose computation is described at the end of Section 2.1. The σv fitting
procedure prioritises recovering the monopole P0, and thus the agreement between MG-Copter

and MG-PICOLA is slightly worse for the quadrupole P2. As expected, for each gravity model
increasing the mass of the neutrinos leads to a decrease in the best-fitting value of σv and
the quality of the fit increases, while for a fixed neutrino mass increasing the strength of
the modification of gravity from GR to F5 and then F4 leads to an increase in the best-
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Figure 3: As in Fig. 1, but for the ratio of real-space non-linear power spectra with and without
neutrino mass.

fitting value of σv and a slightly worse quality of fit. The reason for this behaviour is that
enhancement to gravity leads to an increase in the velocities of galaxies around an overdensity,
thus increasing the non-linear damping, while massive neutrinos have the opposite effect due
to their suppression of structure formation. The quality of the fit is better when the non-
linearity is smaller and vice versa. However, in all cases the quality of the fit of MG-Copter

to MG-PICOLA is good up to quasi-non-linear scales.
Figure 5 displays the same data as Fig. 4 but presented as the ratio of the full non-linear

multipoles to their linear counterparts computed with the Kaiser RSD model [42], while Fig. 6
presents the data of Fig. 4 as the ratio of the non-linear power-spectra multipoles with and
without massive neutrinos for both the 0.06eV and 0.2eV neutrinos. The error bars on the
MG-PICOLA points in these two figures represent the standard deviation of the 5 additional
MG-PICOLA simulations. As in real-space, the scale up to which MG-Copter closely follows
the results of the MG-PICOLA simulations is slightly improved due to taking the ratio between
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Figure 4: Redshift-space non-linear power spectra for various gravity models and neutrino masses
at z = 1. Points represent the results of paired-fixed MG-PICOLA N-body simulations, while solid lines
are the result of MG-Copter with velocity dispersion σv fitted to MG-PICOLA up to k = 0.15 h/Mpc,
shown by the vertical dashed line. The error bars are those of an ideal survey with survey volume
Vs = 10 Gpc3/h3 and galaxy density n̄g = 4× 10−3 h3/Mpc3. The blue circles and solid line give the
monopole P0, and the orange squares and dashed line give the quadrupole P2.

power spectra in two models.
We also quantify the ability of MG-Copter to recover the redshift-space multipole results

of MG-PICOLA through χ2
mν

; the difference between the redshift-space multipoles with and
without neutrino mass. In Fig. 7 we display χ2

mν
as a function of the maximum comparison

scale kmax for GR, F5, and F4 each with 0.06eV and 0.2eV neutrinos at z = 1. Here,
MG-Copter is fitted to the MG-PICOLA simulations up to kmax with the covariance computed
assuming an ideal survey as described at the end of Section 2.1. The agreement in χ2

mν

between MG-PICOLA and MG-Copter fitted to MG-PICOLA is excellent in all cases. This implies
that MG-Copter with σv fitted to simulations is capable of capturing the effect of massive
neutrinos accurately.

4 Degeneracy

With the inclusion of modified gravity and massive neutrinos in MG-Copter the degeneracy
between the two effects can be investigated.

4.1 Real- and redshift-space

We start by studying the degeneracy between modified gravity and massive neutrinos in real
space.
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Figure 5: As in Fig. 4 but for the ratio of the redshift-space power spectrum multipoles to their
linear (Kaiser) counterparts. The error bars on the MG-PICOLA points represent the standard deviation
of the five additional MG-PICOLA simulations.

In Fig. 8 we display the ratio of real-space power spectra in F4 gravity with 0.06eV neu-
trinos in the left panel and 0.2eV neutrinos in the right panel to a fiducial model which we take
to be GR with 0.06eV neutrinos at z = 1. We show results for the density auto-correlation
Pδδ, the velocity divergence auto-correlation Pθθ, and the density-velocity divergence cross-
correlation Pδθ. The results of paired-fixed MG-PICOLA simulations and of MG-Copter are
plotted. The error bars on the MG-PICOLA results are computed using the standard deviation
over the five additional simulations. In all cases, the results of MG-Copter agree well with
those of MG-PICOLA up to quasi-non-linear scales around k = 0.1 h/Mpc. The left panel,
where the neutrino masses are the same in both GR and F4, shows the scale-dependent en-
hancement of the real-space power spectra provided by F4 gravity. However, when heavier
neutrinos are added to the F4 case, as in the right panel, this enhancement is opposed by the
suppression effect of the massive neutrinos. Indeed, the right panel shows that Pδδ is a poor
probe to distinguish between GR with 0.06eV neutrinos and F4 with 0.2eV neutrinos in this
particular case. However, the two models remain distinguishable in Pδθ and Pθθ, showing
that velocity information has the potential to break the degeneracy between modified gravity
and massive neutrinos. This was recently shown using the results of full N-body simulations
[44]. However, neither Pδθ nor Pθθ can be measured directly by observations. Instead, it is
necessary to extract the velocity information that is encoded within redshift-space distor-
tions, and it is to this we turn our attention. We shall refer to GR with 0.06eV neutrinos
and F4 with 0.2eV neutrinos as our two degenerate models.

In Fig. 9 we plot the redshift-space monopole and quadrupoles in F4 gravity with 0.2eV
neutrinos normalised to GR with 0.06eV neutrinos computed with both MG-Copter and
MG-PICOLA. For each model the MG-Copter result has been produced by fitting σv to the
paired-fixed MG-PICOLA simulation up to k = 0.15 h/Mpc with the covariance computed
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Figure 6: As in Fig. 4, but for the ratio of redshift-space non-linear power spectra with and without
neutrino mass. The error bars on the MG-PICOLA points represent the standard deviation of the five
additional MG-PICOLA simulations.

assuming a DESI-like survey as detailed at the end of Section 2.1. The error bars on the
MG-PICOLA results are computed using the standard deviation over five simulations with a
boxsize of 1 Gpc/h for each model. Firstly, this plot shows that modelling the redshift-
space monopole and quadrupole using MG-Copter with σv fitted to MG-PICOLA simulations
works well. Secondly, for our degenerate models, while the monopole is still a poor probe
for distinguishing between the models, the quadrupole, by virtue of the encoding of velocity
information, displays differences between the two models and thus has the potential to break
the degeneracy.

4.2 Redshift evolution

Our method also allows us to investigate how the degeneracy evolves with redshift in both
real- and redshift-space.

In Fig. 10 we show the real-space power spectra in the ratio between the two degenerate
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Figure 8: Ratio of real-space power spectra in F4 with mν = 0.06eV (left panel) and mν = 0.2eV
(right panel) to the fiducial model of GR with mν = 0.06eV at z = 1. Points represent the results
of paired-fixed MG-PICOLA N-body simulations, while lines are the result of MG-Copter. The blue
circles and dashed-dotted line give the density auto-correlated power spectra Pδδ, the pink squares
and dashed line give the density-velocity divergence cross-correlated power spectra Pδθ, while the
orange triangles and solid line give the velocity divergence auto-correlated power spectra Pθθ.

models as in the right panel of Fig. 8 but at z = 0.5 (left panel) and z = 1.5 (right panel). In
Fig. 11 we show the redshift-space power spectrum multipoles in the ratio between the two
degenerate models as in Fig. 9 but at z = 0.5 (left panel) and z = 1.5 (right panel). These
figures demonstrate that the degeneracy evolves significantly with redshift, both in real- and
redshift-space. Figure 10 shows that while our two degenerate models had similar matter
power spectra at z = 1 it is easier to distinguish between the two models with the matter
power spectrum at other redshifts.
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Figure 9: Degeneracy between F4 with mν = 0.2eV and the fiducial model of GR with mν = 0.06eV
in the redshift-space power spectrum multipoles at z = 1, represented as the ratio of power spectra in
the two models. Points represent the results of paired-fixed MG-PICOLA N-body simulations, while solid
lines are the result of MG-Copter with velocity dispersion σv fitted to MG-PICOLA up to k = 0.15 h/Mpc.
The blue circles and solid line give the monopole P0, while the orange squares and dashed line give
the quadrupole P2. The best-fitting value of σv for each model and the associated reduced χ2 are
σv = 3.07 Mpc/h with χ2

r = 0.27 for GR+0.06eV and σv = 3.23 Mpc/h with χ2
r = 0.39 for F4+0.2eV.

In Fig. 12 we plot the difference between the redshift-space multipoles in the two de-
generate models quantified through χ2

MG+mν
as a function of the maximum comparison scale

kmax. We show χ2
MG+mν

as computed by both MG-PICOLA and MG-Copter with σv fitted to
MG-PICOLA up to kmax with the covariance computed assuming a DESI-like survey as detailed
at the end of Section 2.1. The results from both methods agree with each other very well. We
plot χ2

MG+mν
at three redshifts z = 1.5, 1.0, 0.5 and it is clear from these results, along with

those in Figs. 10 and 11, that the ability to distinguish between the redshift-space multipoles
of these two models evolves with redshift. This emphasises the potential for data at multi-
ple redshifts to break the degeneracy. The tomographic nature of weak lensing observations
make them well suited to this task, and the combination of redshift-space distortion mea-
surements with weak lensing observations could prove one of the best probes for breaking the
modified gravity-massive neutrino degeneracy. However, it should be noted that systematics
associated with weak lensing such as baryonic effects and intrinsic alignments may impact
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Figure 10: As in the right panel of Fig. 8, but showing the evolution of the degeneracy with redshift.
The left panel corresponds to z = 0.5 and the right to z = 1.5.
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Figure 11: As in Fig. 9, but showing the evolution of the degeneracy with redshift. The left panel
corresponds to z = 0.5 and the right to z = 1.5. For GR with 0.06eV neutrinos, the best-fitting
value of σv and the corresponding reduced χ2 are σv = 3.84 Mpc/h and χ2

r = 0.29 for z = 0.5,
and σv = 2.36 Mpc/h and χ2

r = 0.065 for z = 1.5. For F4 with 0.2eV neutrinos, the best-fitting
value of σv and the corresponding reduced χ2 are σv = 4.13 Mpc/h and χ2

r = 0.34 for z = 0.5, and
σv = 2.45 Mpc/h and χ2

r = 0.079 for z = 1.5. In all cases σv has been fitted to MG-PICOLA up to
k = 0.15 h/Mpc.

the effectiveness of such a probe.

5 Conclusions

In this paper, we have studied the potential for redshift-space distortions to break the de-
generacy between the enhancement of structure growth provided by modifications to gravity
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redshift-space multipoles of the two degenerate models as a function of maximum comparison scale.
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and suppression of structure growth due to massive neutrinos, at the level of the dark matter
field. For combinations of modified gravity parameters and neutrino masses that have simi-
lar matter power spectra at a given redshift, the growth rates are different and will remain
distinguishable. This degeneracy-breaking growth rate information is encoded via veloci-
ties into redshift-space distortions. To carry out this work, we have modelled the effects of
both modified gravity and massive neutrinos on real- and redshift-space power spectra with
Standard Perturbation Theory through the code MG-Copter. We find the implementation of
modified gravity and massive neutrinos in MG-Copter produces a good agreement for both
real- and redshift-space power spectra with the simulation results from the code MG-PICOLA

in the case of Hu-Sawicki f(R) gravity.
We have then investigated the degeneracy and shown that the quadrupole of the redshift-

space power spectrum retains enough of the velocity information to distinguish between GR
with light neutrinos and Hu-Sawicki f(R) with heavy neutrinos. The logical next step is to
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confirm that we can use the computationally inexpensive modelling of RSD in MG-Copter

to recover a fiducial combination of |fR0| and mν from a simulation. An important open
question for this endeavour is whether the process of fitting σv introduces a new degeneracy,
where σv can dampen the redshift-space multipoles of a model with incorrect |fR0| and mν

values in a way that makes them difficult to distinguish from those of the fiducial simulation.
Future work will focus on extending the modelling of RSD with modified gravity and massive
neutrinos to dark matter halos and galaxies in order to bring this method closer to being
able to use RSD observations to jointly constrain modified gravity and massive neutrinos.
It will be important to study how our conclusions change when we consider biased tracers
instead of the underlying dark matter, as the bias parameters may also introduce additional
degeneracies.

We have also briefly studied how the degeneracy evolves with redshift. There is a
clear evolution of the degeneracy with redshift even for the matter power spectrum; for
combinations of modified gravity and neutrino mass parameters that give comparable matter
power spectra at one redshift, the matter power spectra at another redshift are in general
likely to be distinguishable. The tomographic nature of weak lensing is particularly well suited
to investigating this approach to breaking the degeneracy, although weak lensing systematics
such as baryonic effects and intrinsic alignments could cause complications. Alternatively, if
modified gravity is only a low redshift effect, a constraint on neutrino mass from clustering at
higher redshift, for example from HI intensity mapping [66], would help break the degeneracy.

A work that appeared shortly after this paper studied RSD in halos from simulations
with f(R) gravity and massive neutrinos and reached conclusions broadly similar to our own
[67].
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