508 research outputs found

    An Exploration of Self-Construction Through Buddhist Imagery in Maxine Hong Kingston\u27s the Women Warrior

    Get PDF
    Buddhist imagery in The Woman Warrior can be interpreted as part of a Buddhist journey, a journey to observe and realize the nature of the self as mutable and indefinable this concept of self becomes transcendent through the novel to the reader by a participatory process which calls for insight beyond the illusion created by the narrative itself. Through an exploration of Buddhist inspired images - silence, seated mediation, the concept of the self as observer, koan, martial arts, the role of suffering and even aspects of transmigration and time - the struggle or journey to define a self transcends the idea of cultural identity and linear narrative that adds to existing critical discussions of the tex

    A combinatorial investigation of sputtered Ta-Al-C thin films

    Get PDF
    We describe a combinatorial experiment investigating the Ta–Al–C material system, conducted with the aim of determining why the tantalum-containing Mn + 1AXn phases have so far proved to be not amenable to thin-film synthesis. Samples were deposited onto (0001) Al2O3 wafers at 850 °C and characterized by X-ray diffraction wafer maps, scanning electron microscopy, and surface optical scattering. Elemental Ta, the binary phases TaC, Ta2C, and TaAl3, and the ternary phases Ta3Al2C and Ta5Al3C were identified. The morphology, phase composition and preferred orientation of the films deposited were found to be highly sensitive to the Ta fraction of the incident flux during deposition. No MAX phase material was observed, indicating that the Ta-containing MAX phases do not form under the deposition conditions investigated. Explanations associated with inadequate coverage of stochiometries, preferential sputtering, and thermodynamic instability have been ruled out. An explanation based on reduced surface diffusion of Ta during growth is proposed. A substantially higher substrate temperature during deposition is likely to be required to synthesize Ta-containing MAX phases

    Simulating the computational mechanisms of cognitive and behavioral psychotherapeutic interventions: insights from active inference

    Get PDF
    Cognitive-behavioral therapy (CBT) leverages interactions between thoughts, feelings, and behaviors. To deepen understanding of these interactions, we present a computational (active inference) model of CBT that allows formal simulations of interactions between cognitive interventions (i.e., cognitive restructuring) and behavioral interventions (i.e., exposure) in producing adaptive behavior change (i.e., reducing maladaptive avoidance behavior). Using spider phobia as a concrete example of maladaptive avoidance more generally, we show simulations indicating that when conscious beliefs about safety/danger have strong interactions with affective/behavioral outcomes, behavioral change during exposure therapy is mediated by changes in these beliefs, preventing generalization. In contrast, when these interactions are weakened, and cognitive restructuring only induces belief uncertainty (as opposed to strong safety beliefs), behavior change leads to generalized learning (i.e., “over-writing” the implicit beliefs about action-outcome mappings that directly produce avoidance). The individual is therefore equipped to face any new context, safe or dangerous, remaining in a content state without the need for avoidance behavior—increasing resilience from a CBT perspective. These results show how the same changes in behavior during CBT can be due to distinct underlying mechanisms; they predict lower rates of relapse when cognitive interventions focus on inducing uncertainty and on reducing the effects of automatic negative thoughts on behavior

    Daily SOFA scoring for ICU patients?

    Get PDF

    Plasma surface engineering to biofunctionalise polymers for β-cell adhesion

    Get PDF
    Implant devices containing insulin-secreting β-cells hold great promise for the treatment of diabetes. Using in vitro cell culture, long-term function and viability are enhanced when β-cells are cultured with extracellular matrix (ECM) proteins. Here, our goal is to engineer a favorable environment within implant devices, where ECM proteins are stably immobilized on polymer scaffolds, to better support β-cell adhesion. Four different polymer candidates (low-density polyethylene (LDPE), polystyrene (PS), polyethersulfone (PES) and polysulfone (PSU)) were treated using plasma immersion ion implantation (PIII) to enable the covalent attachment of laminin on their surfaces. Surface characterisation analysis shows the increased hydrophilicity, polar groups and radical density on all polymers after the treatment. Among the four polymers, PIII-treated LDPE has the highest water contact angle and the lowest radical density which correlate well with the non-significant protein binding improvement observed after 2 months of storage. The study found that the radical density created by PIII treatment of aromatic polymers was higher than that created by the treatment of aliphatic polymers. The higher radical density significantly improves laminin attachment to aromatic polymers, making them better substrates for β-cell adhesion

    The connection analysis between the dilution of the deposited Fe-Cr-V-Mo-C layer by the basic metal and the parameters of its microstructure

    Get PDF
    In this work, the structure of the Fe-Cr-V-Mo-C coatings received by plasma transferred arc cladding was investigated. Coatings were deposited on plates with a thickness of 10 mm and made from constructional steel (steel 20). The correlation analysis of relationships between dilution of the deposited layers by the basic metal and the parameters of their microstructure was carried out. The parameters were as follows: volume fraction, a size, a shape factor, the distance between particles, the number of particles of vanadium carbide, volume fraction of the eutectic on the basis of carbide M[7]C[3] and the distances between its colonies, as well as the volume fraction of the [alpha]-phase in the alloy matrix

    Mechanisms for covalent immobilization of horseradish peroxi-dase on ion beam treated polyethylene

    Get PDF
    The mechanism that provides the observed strong binding of biomolecules to polymer sur-faces modified by ion beams is investigated. The surface of polyethylene (PE) was modified by plasma immersion ion implantation with nitrogen ions. Structure changes including car-bonization and oxidation were observed in the modified surface layer of PE by Raman spec-troscopy, FTIR ATR spectroscopy, atomic force microscopy, surface energy measurement and XPS spectroscopy. An observed high surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with stor-age time after PIII treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish per-oxidase was covalently attached onto the modified PE surface. The enzymatic activity of co-valently attached protein remained high. A mechanism based on the covalent attachment by the reaction of protein with free radicals in the modified surface is proposed. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The long-term activity of the modified layer to attach protein (at least 2 years) is explained by stabilisa-tion of unpaired electrons in sp2 carbon structures. The native conformation of attached pro-tein is retained due to hydrophilic interactions in the interface region. A high concentration of free radicals on the surface can give multiple covalent bonds to the protein molecule and de-stroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers
    corecore