275 research outputs found

    Regge Calculus in Teleparallel Gravity

    Get PDF
    In the context of the teleparallel equivalent of general relativity, the Weitzenbock manifold is considered as the limit of a suitable sequence of discrete lattices composed of an increasing number of smaller an smaller simplices, where the interior of each simplex (Delaunay lattice) is assumed to be flat. The link lengths between any pair of vertices serve as independent variables, so that torsion turns out to be localized in the two dimensional hypersurfaces (dislocation triangle, or hinge) of the lattice. Assuming that a vector undergoes a dislocation in relation to its initial position as it is parallel transported along the perimeter of the dual lattice (Voronoi polygon), we obtain the discrete analogue of the teleparallel action, as well as the corresponding simplicial vacuum field equations.Comment: Latex, 10 pages, 2 eps figures, to appear in Class. Quant. Gra

    Gauge theory of disclinations on fluctuating elastic surfaces

    Full text link
    A variant of a gauge theory is formulated to describe disclinations on Riemannian surfaces that may change both the Gaussian (intrinsic) and mean (extrinsic) curvatures, which implies that both internal strains and a location of the surface in R^3 may vary. Besides, originally distributed disclinations are taken into account. For the flat surface, an extended variant of the Edelen-Kadic gauge theory is obtained. Within the linear scheme our model recovers the von Karman equations for membranes, with a disclination-induced source being generated by gauge fields. For a single disclination on an arbitrary elastic surface a covariant generalization of the von Karman equations is derived.Comment: 13 page

    An elastoplastic theory of dislocations as a physical field theory with torsion

    Full text link
    We consider a static theory of dislocations with moment stress in an anisotropic or isotropic elastoplastical material as a T(3)-gauge theory. We obtain Yang-Mills type field equations which express the force and the moment equilibrium. Additionally, we discuss several constitutive laws between the dislocation density and the moment stress. For a straight screw dislocation, we find the stress field which is modified near the dislocation core due to the appearance of moment stress. For the first time, we calculate the localized moment stress, the Nye tensor, the elastoplastic energy and the modified Peach-Koehler force of a screw dislocation in this framework. Moreover, we discuss the straightforward analogy between a screw dislocation and a magnetic vortex. The dislocation theory in solids is also considered as a three-dimensional effective theory of gravity.Comment: 38 pages, 6 figures, RevTe

    Torsion Degrees of Freedom in the Regge Calculus as Dislocations on the Simplicial Lattice

    Get PDF
    Using the notion of a general conical defect, the Regge Calculus is generalized by allowing for dislocations on the simplicial lattice in addition to the usual disclinations. Since disclinations and dislocations correspond to curvature and torsion singularities, respectively, the method we propose provides a natural way of discretizing gravitational theories with torsion degrees of freedom like the Einstein-Cartan theory. A discrete version of the Einstein-Cartan action is given and field equations are derived, demanding stationarity of the action with respect to the discrete variables of the theory

    Nonholonomic Mapping Principle for Classical Mechanics in Spaces with Curvature and Torsion. New Covariant Conservation Law for Energy-Momentum Tensor

    Full text link
    The lecture explains the geometric basis for the recently-discovered nonholonomic mapping principle which specifies certain laws of nature in spacetimes with curvature and torsion from those in flat spacetime, thus replacing and extending Einstein's equivalence principle. An important consequence is a new action principle for determining the equation of motion of a free spinless point particle in such spacetimes. Surprisingly, this equation contains a torsion force, although the action involves only the metric. This force changes geodesic into autoparallel trajectories, which are a direct manifestation of inertia. The geometric origin of the torsion force is a closure failure of parallelograms. The torsion force changes the covariant conservation law of the energy-momentum tensor whose new form is derived.Comment: Corrected typos. Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re261/preprint.htm

    Disclinations, dislocations and continuous defects: a reappraisal

    Full text link
    Disclinations, first observed in mesomorphic phases, are relevant to a number of ill-ordered condensed matter media, with continuous symmetries or frustrated order. They also appear in polycrystals at the edges of grain boundaries. They are of limited interest in solid single crystals, where, owing to their large elastic stresses, they mostly appear in close pairs of opposite signs. The relaxation mechanisms associated with a disclination in its creation, motion, change of shape, involve an interplay with continuous or quantized dislocations and/or continuous disclinations. These are attached to the disclinations or are akin to Nye's dislocation densities, well suited here. The notion of 'extended Volterra process' takes these relaxation processes into account and covers different situations where this interplay takes place. These concepts are illustrated by applications in amorphous solids, mesomorphic phases and frustrated media in their curved habit space. The powerful topological theory of line defects only considers defects stable against relaxation processes compatible with the structure considered. It can be seen as a simplified case of the approach considered here, well suited for media of high plasticity or/and complex structures. Topological stability cannot guarantee energetic stability and sometimes cannot distinguish finer details of structure of defects.Comment: 72 pages, 36 figure

    Gravitational Geometric Phase in the Presence of Torsion

    Full text link
    We investigate the relativistic and non-relativistic quantum dynamics of a neutral spin-1/2 particle submitted an external electromagnetic field in the presence of a cosmic dislocation. We analyze the explicit contribution of the torsion in the geometric phase acquired in the dynamic of this neutral spinorial particle. We discuss the influence of the torsion in the relativistic geometric phase. Using the Foldy-Wouthuysen approximation, the non-relativistic quantum dynamics are studied and the influence of the torsion in the Aharonov-Casher and He-McKellar-Wilkens effects are discussed.Comment: 14 pages, no figur

    The Inverse Variational Problem for Autoparallels

    Full text link
    We study the problem of the existence of a local quantum scalar field theory in a general affine metric space that in the semiclassical approximation would lead to the autoparallel motion of wave packets, thus providing a deviation of the spinless particle trajectory from the geodesics in the presence of torsion. The problem is shown to be equivalent to the inverse problem of the calculus of variations for the autoparallel motion with additional conditions that the action (if it exists) has to be invariant under time reparametrizations and general coordinate transformations, while depending analytically on the torsion tensor. The problem is proved to have no solution for a generic torsion in four-dimensional spacetime. A solution exists only if the contracted torsion tensor is a gradient of a scalar field. The corresponding field theory describes coupling of matter to the dilaton field.Comment: 13 pages, plain Latex, no figure

    Työvoiman ikääntyminen ja ikäjohtaminen Suomen kunnissa asiakirja-analyysi kuntien strategioista

    Get PDF
    In response to a sharp decline in recreational fishing participation in Queensland, Australia, I sought to identify constraints experienced by fishers in Queensland and understand how demographic variables, fishing participation variables, and fishing motivations influence the amount and type of constraints experienced. In a survey of Queensland recreational fishers, 70% reported experiencing constraints-predominantly lack of time, crowding, unavailability of facilities, and costs associated with fishing. Fishers with higher incomes, fishers with higher centrality of fishing to lifestyle, fishers who placed higher importance on motivations related to catching fish and relaxation, and fishers who were male were more likely to experience constraints. With the exception of gender, variables found to have a significant effect on the presence of constraints also had a significant influence on the types of constraints experienced. Results provide insight into factors affecting recreational fishing participation in Queensland; however, additional research-particularly with recent fishing drop-outs-is needed to fully understand recent declines in fishing participation
    • …
    corecore