research

Nonholonomic Mapping Principle for Classical Mechanics in Spaces with Curvature and Torsion. New Covariant Conservation Law for Energy-Momentum Tensor

Abstract

The lecture explains the geometric basis for the recently-discovered nonholonomic mapping principle which specifies certain laws of nature in spacetimes with curvature and torsion from those in flat spacetime, thus replacing and extending Einstein's equivalence principle. An important consequence is a new action principle for determining the equation of motion of a free spinless point particle in such spacetimes. Surprisingly, this equation contains a torsion force, although the action involves only the metric. This force changes geodesic into autoparallel trajectories, which are a direct manifestation of inertia. The geometric origin of the torsion force is a closure failure of parallelograms. The torsion force changes the covariant conservation law of the energy-momentum tensor whose new form is derived.Comment: Corrected typos. Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re261/preprint.htm

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 17/02/2019