69 research outputs found

    Combined mnemonic strategy training and high-definition transcranial direct current stimulation for memory deficits in mild cognitive impairment

    Full text link
    Introduction: Memory deficits characterize Alzheimer’s dementia and the clinical precursor stage known as mild cognitive impairment. Nonpharmacologic interventions hold promise for enhancing functioning in these patients, potentially delaying functional impairment that denotes transition to dementia. Previous findings revealed that mnemonic strategy training (MST) enhances long-term retention of trained stimuli and is accompanied by increased blood oxygen level–dependent signal in the lateral frontal and parietal cortices as well as in the hippocampus. The present study was designed to enhance MST generalization, and the range of patients who benefit, via concurrent delivery of transcranial direct current stimulation (tDCS). Methods: This protocol describes a prospective, randomized controlled, four-arm, double-blind study targeting memory deficits in those with mild cognitive impairment. Once randomized, participants complete five consecutive daily sessions in which they receive either active or sham high definition tDCS over the left lateral prefrontal cortex, a region known to be important for successful memory encoding and that has been engaged by MST. High definition tDCS (active or sham) will be combined with either MST or autobiographical memory recall (comparable to reminiscence therapy). Participants undergo memory testing using ecologically relevant measures and functional magnetic resonance imaging before and after these treatment sessions as well as at a 3-month follow-up. Primary outcome measures include face-name and object-location association tasks. Secondary outcome measures include self-report of memory abilities as well as a spatial navigation task (near transfer) and prose memory (medication instructions; far transfer). Changes in functional magnetic resonance imaging will be evaluated during both task performance and the resting-state using activation and connectivity analyses. Discussion: The results will provide important information about the efficacy of cognitive and neuromodulatory techniques as well as the synergistic interaction between these promising approaches. Exploratory results will examine patient characteristics that affect treatment efficacy, thereby identifying those most appropriate for intervention

    Direct current stimulation of endothelial monolayers induces a transient and reversible increase in transport due to the electroosmotic effect

    Full text link
    We investigated the effects of direct current stimulation (DCS) on fluid and solute transport across endothelial cell (EC) monolayers in vitro. Our motivation was transcranial direct current stimulation (tDCS) that has been investigated for treatment of neuropsychiatric disorders, to enhance neurorehabilitation, and to change cognition in healthy subjects. The mechanisms underlying this diversity of applications remain under investigation. To address the possible role of blood-brain barrier (BBB) changes during tDCS, we applied direct current to cultured EC monolayers in a specially designed chamber that generated spatially uniform direct current. DCS induced fluid and solute movement across EC layers that persisted only for the duration of the stimulation suggesting an electroosmosis mechanism. The direction of induced transport reversed with DCS polarity – a hallmark of the electroosmotic effect. The magnitude of DCS-induced flow was linearly correlated to the magnitude of the applied current. A mathematical model based on a two-pore description of the endothelial transport barrier and a Helmholtz model of the electrical double layer describes the experimental data accurately and predicts enhanced significance of this mechanism in less permeable monolayers. This study demonstrates that DCS transiently alters the transport function of the BBB suggesting a new adjunct mechanism of tDCS

    Prefronto-cerebellar neuromodulation affects appetite in obesity

    Full text link
    Human neuroimaging studies have consistently reported changes in cerebellar function and integrity in association with obesity. To date, however, the nature of this link has not been studied directly. Emerging evidence suggests a role for the cerebellum in higher cognitive functions through reciprocal connections with the prefrontal cortex. The purpose of this exploratory study was to examine appetite changes associated with noninvasive prefronto-cerebellar neuromodulation in obesity. 12 subjects with class I obesity (mean BMI 32.9 kg/m2) underwent a randomized, single-blinded, sham-controlled, crossover study, during which they received transcranial direct current stimulation (tDCS; active/sham) aimed at simultaneously enhancing the activity of the prefrontal cortex and decreasing the activity of the cerebellum. Changes in appetite (state and food-cue-triggered) and performance in a food-modified working memory task were evaluated. We found that active tDCS caused an increase in hunger and desire to eat following food-cue exposure. In line with these data, subjects also tended to make more errors during the working memory task. No changes in basic motor performance occurred. This study represents the first demonstration that prefronto-cerebellar neuromodulation can influence appetite in individuals with obesity. While preliminary, our findings support a potential role for prefronto-cerebellar pathways in the behavioral manifestations of obesity

    Transcranial direct current stimulation facilitates cognitive multi-task performance differentially depending on anode location and subtask

    Get PDF
    There is a need to facilitate acquisition of real world cognitive multi-tasks that require long periods of training (e.g., air traffic control, intelligence analysis, medicine). Non-invasive brain stimulation—specifically transcranial Direct Current Stimulation (tDCS)—has promise as a method to speed multi-task training. We hypothesized that during acquisition of the complex multi-task Space Fortress, subtasks that require focused attention on ship control would benefit from tDCS aimed at the dorsal attention network while subtasks that require redirection of attention would benefit from tDCS aimed at the right hemisphere ventral attention network. We compared effects of 30 min prefrontal and parietal stimulation to right and left hemispheres on subtask performance during the first 45 min of training. The strongest effects both overall and for ship flying (control and velocity subtasks) were seen with a right parietal (C4, reference to left shoulder) montage, shown by modeling to induce an electric field that includes nodes in both dorsal and ventral attention networks. This is consistent with the re-orienting hypothesis that the ventral attention network is activated along with the dorsal attention network if a new, task-relevant event occurs while visuospatial attention is focused (Corbetta et al., 2008). No effects were seen with anodes over sites that stimulated only dorsal (C3) or only ventral (F10) attention networks. The speed subtask (update memory for symbols) benefited from an F9 anode over left prefrontal cortex. These results argue for development of tDCS as a training aid in real world settings where multi-tasking is critical

    Transcranial electrical stimulation motor threshold can estimate individualized tDCS dosage from reverse-calculation electric-field modeling

    Full text link
    Background Unique amongst brain stimulation tools, transcranial direct current stimulation (tDCS) currently lacks an easy or widely implemented method for individualizing dosage. Objective We developed a method of reverse-calculating electric-field (E-field) models based on Magnetic Resonance Imaging (MRI) scans that can estimate individualized tDCS dose. We also evaluated an MRI-free method of individualizing tDCS dose by measuring transcranial magnetic stimulation (TMS) motor threshold (MT) and single pulse, suprathreshold transcranial electrical stimulation (TES) MT and regressing it against E-field modeling. Key assumptions of reverse-calculation E-field modeling, including the size of region of interest (ROI) analysis and the linearity of multiple E-field models were also tested. Methods In 29 healthy adults, we acquired TMS MT, TES MT, and anatomical T1-weighted MPRAGE MRI scans with a fiducial marking the motor hotspot. We then computed a “reverse-calculated tDCS dose” of tDCS applied at the scalp needed to cause a 1.00 V/m E-field at the cortex. Finally, we examined whether the predicted E-field values correlated with each participant’s measured TMS MT or TES MT. Results We were able to determine a reverse-calculated tDCS dose for each participant using a 5 × 5 x 5 voxel grid region of interest (ROI) approach (average = 6.03 mA, SD = 1.44 mA, range = 3.75–9.74 mA). The Transcranial Electrical Stimulation MT, but not the Transcranial Magnetic Stimulation MT, significantly correlated with the ROI-based reverse-calculated tDCS dose determined by E-field modeling (R2= 0.45, p \u3c 0.001). Conclusions Reverse-calculation E-field modeling, alone or regressed against TES MT, shows promise as a method to individualize tDCS dose. The large range of the reverse-calculated tDCS doses between subjects underscores the likely need to individualize tDCS dose. Future research should further examine the use of TES MT to individually dose tDCS as an MRI-free method of dosing tDCS

    Dataset of Middle Cerebral Artery Blood Flow Stability in Response to High-Definition Transcranial Electrical Stimulation

    Get PDF
    This supplementary dataset is supportive of the randomized sham-controlled, double-blind, crossover clinical trial investigating polarity- and intensity-dependent effects of high-definition transcranial electrical stimulation (HD-tDCS) applied over the right temporo-parietal junction on mean middle cerebral artery blood flow velocity (MCA-BFv) bilaterally. Data of eleven healthy right-handed adults (6 women, 5 men; mean age 31 ± 5.6 years old) were analyzed for MCA-BFv, assessed using transcranial doppler ultrasound on the stimulated and the contralateral hemisphere concomitantly, during and after 3 blocks of 2 min HD-tDCS at 1, 2, and 3 mA. Participants received three electrical stimulation conditions (anode center, cathode center, and sham) randomly ordered across different days. The collected data is publicly available at Mendeley Data. This article and the data will inform future related investigations and safety analysis of transcranial non-invasive brain stimulation

    Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation in neurological and psychiatric disorders

    Get PDF
    Background: Transcranial direct current stimulation has shown promising clinical results, leading to increased demand for an evidence-based review on its clinical effects. Objective: We convened a team of transcranial direct current stimulation experts to conduct a systematic review of clinical trials with more than 1 session of stimulation testing: pain, Parkinson’s disease motor function and cognition, stroke motor function and language, epilepsy, major depressive disorder, obsessive compulsive disorder, Tourette syndrome, schizophrenia, and drug addiction. Methods: Experts were asked to conduct this systematic review according to the search methodology from PRISMA guidelines. Recommendations on efficacy were categorized into Levels A (definitely effective), B (probably effective), C (possibly effective), or no recommendation. We assessed risk of bias for all included studies to confirm whether results were driven by potentially biased studies. Results: Although most of the clinical trials have been designed as proof-of-concept trials, some of the indications analyzed in this review can be considered as definitely effective (Level A), such as depression, and probably effective (Level B), such as neuropathic pain, fibromyalgia, migraine, post-operative patient-controlled analgesia and pain, Parkinson’s disease (motor and cognition), stroke (motor), epilepsy, schizophrenia, and alcohol addiction. Assessment of bias showed that most of the studies had low risk of biases, and sensitivity analysis for bias did not change these results. Effect sizes vary from 0.01 to 0.70 and were significant in about 8 conditions, with the largest effect size being in postoperative acute pain and smaller in stroke motor recovery (nonsignificant when combined with robotic therapy). Conclusion: All recommendations listed here are based on current published PubMed-indexed data. Despite high levels of evidence in some conditions, it must be underscored that effect sizes and duration of effects are often limited; thus, real clinical impact needs to be further determined with different study designs

    Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS)

    Full text link
    Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional consequences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has never been systematically studied. We investigated whether bilateral tDCS over the temporal- parietal region could result in both online and offline SVV misperception in healthy subjects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy subjects performed tests of SVV before, during and after the tDCS applied over the temporal- parietal region in three conditions used on different days: right anode/left cathode; right cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-specific current flow patterns were investigated using computational models. SVV was significantly displaced towards the anode during both active stimulation conditions when compared to sham condition. Immediately after both active conditions, there were rebound effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left anode condition. Current flow models predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters in the posterior limb of the internal capsule. The present findings indicate that tDCS over the temporal-parietal region can significantly alter human SVV perception. This tDCS approach may be a potential clinical tool for the treatment of SVV misperception in neurological patients

    Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes

    Get PDF
    Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function161CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP465686/2014-1Não tem2014/50909-8; 13/10187–0; 14/10134–7The authors thank the Ministry of Education (MEC), FAPESP - São Paulo Research Foundation, Universidade Estadual de Londrina, Universidade Federal do Rio Grande do Norte and Universidade Federal do ABC for its support. Postdoctoral scholarships to DGSM from the Coordination for the Improvement of Higher Education Personnel (CAPES). Source(s) of financial support: This study was partially funded by grants to MB from NIH (NIH-NIMH 1R01MH111896, NIH-NINDS 1R01NS101362, NIH-NCI U54CA137788/U54CA132378, R03 NS054783) and New York State Department of Health (NYS DOH, DOH01-C31291GG), CEPID/BRAINN - The Brazilian Institute of Neuroscience and Neurotechnology (Process: 13/07559–3) to LML, Brazilian National Research Council (CNPq, Grant # 465686/2014-1) and the São Paulo Research Foundation (Grant # 2014/50909-8) to MSC, and Postdoctoral scholarships to AHO from FAPESP - Sao Paulo Research Foundation (Process: 13/10187–0 and 14/10134–7
    • 

    corecore