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Abstract

Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue.
Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports
performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and
motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also
report on neuromodulation mechanisms, main applications, current knowledge including areas such as language,
embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of
new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one
of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor
learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current
Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS
combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.

Keywords: Neuromodulation, Non-invasive brain stimulation, Motor rehabilitation, Motor learning, Motor
performance, Sport, HD-tDCS, tsDCS, ctDCS, TMS-evoked potential, Connectivity

Introduction
Transcranial electrical stimulation has recently attracted
considerable scientific interest due to its ability to modu-
late brain functioning. From a historical perspective,
ancient Greek philosophers Plato and Aristotle were
both aware of the torpedo fish electrical discharges
capacity to elicit therapeutic effects [1, 2]. The use of a
live torpedo fish on the scalp to cure headaches might
indeed be classified as an early form of transcranial

direct current stimulation (tDCS). This practice consists
in applying a direct current in a transcranial way, as con-
trasted with intracranial way, and with a putative brain ac-
tivity modulation effect. The fish electrical stimulation was
used for the treatment of epilepsy, demonic possessions,
headaches, and even gout for over 10 centuries [2, 3].
Currently, tDCS devices apply a weak direct electrical

current (0.5–2mA, typically power by a 9 V battery)
through two or more electrodes placed on the scalp, typic-
ally for a relatively long period of time (e.g., 20min) to fa-
cilitate or inhibit spontaneous neuronal activity. The
stimulation facilitates or inhibits spontaneous neuronal ac-
tivity putatively resulting in cortical excitability modulation
[4–7] and neuroplastic reorganization [8–11]. tDCS has
been used in neuropsychiatric [12–14] and neurological
disorders [15–19], modulation of autonomic nervous

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: alexandre.okano@ufabc.edu.br; emaildookano@gmail.com
2Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/
CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
4Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Santo
André, Brazil
Full list of author information is available at the end of the article

Morya et al. Journal of NeuroEngineering and Rehabilitation          (2019) 16:141 
https://doi.org/10.1186/s12984-019-0581-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-019-0581-1&domain=pdf
http://orcid.org/0000-0002-8995-1392
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:alexandre.okano@ufabc.edu.br
mailto:emaildookano@gmail.com


system [20–23], appetite [24–26], energy expenditure [27],
motor performance [21, 28, 29] and motor learning [8, 30–
33]. More recently, a high-definition-tDCS (HD-tDCS)
was developed with arrays of smaller “high-definition”
electrodes to increase brain modulation accuracy [34,
35]. Delivery of HD-tDCS is capable of inducing sig-
nificant neurophysiological and clinical effects in both
healthy subjects and patients [36].
Therefore, the current paper aims to review, based on

an integrative approach, the current state of knowledge fo-
cused on the following research topics: (1) Physiological
basis and mechanisms of tDCS in motor rehabilitation
and motor learning; (2) tDCS as a motor rehabilitation in
neurological disorders; (3) tDCS as a form of motor re-
habilitation in musculoskeletal disorders; (4) tDCS as a
tool to counteract maladaptive plasticity in chronic mus-
culoskeletal pain; (5) facilitation of motor learning and
consolidation by tDCS in patients and athletes; (6) under-
appreciated motor cortex stimulation for psychiatric dis-
orders; (7) language and embodied cognition; (8)
functional and social aspects; (9) High-definition tDCS
(HD-tDCS) on neurologic disease, pain relief and motor
learning/rehabilitation. (10) Transcutaneous Spinal Direct
Current Stimulation (tsDCS) on clinical applications; (11)

Cerebellar tDCS (ctDCS) and its influence on motor
learning; and (12) TMS combined with electroencephalog-
raphy (EEG) as a tool to evaluate tDCS effects on brain
function. These topics are summarized in the Fig. 1.

Physiological basis and functional connectivity of
tDCS in motor rehabilitation and motor learning
Mechanisms of tDCS in motor rehabilitation and motor
learning
tDCS generates low intensity-sustained current (electric
field) in the brain [35, 37, 38]. There are two related
mechanisms of tDCS that support its use in motor re-
habilitation: modulation of neuronal excitability and
plasticity (for a general review of tDCS mechanisms see
[39]. For decades, it has been established in animal
models that direct current stimulation (DCS) can pro-
duce polarity-specific changes in neuronal excitability;
“anodal” and “cathodal” polarities provide increasing and
decreasing excitability, respectively [40] (Fig. 2). When
DCS is sustained for several minutes, animal [41, 42]
and canonical human neurophysiology studies using
TMS [43] have demonstrated changes in neuronal excit-
ability that are persistent for minutes after termination
of stimulation. Animal models have further linked long-

Fig. 1 Many different studies have shown tDCS beneficial results on motor rehabilitation, but very few have discussed the potential integrative
effect of tDCS beyond the target area. This figure depicts an overview from: aphysiological mechanisms, bmotor and neurological rehabilitation
to c futures perspectives with high definition tDCS. The growing scientific literature results in many different disorders supports the integrative
involvement of researchers to ultimately improve the quality of life of thousands of patients around the world
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term changes in excitability with synaptic plasticity (e.g.,
long-term potentiation; LTP [8, 44–46] while clinical tri-
als of tDCS have investigated lasting changes following
repeated sessions. The modulation of excitability, mea-
sured during or acutely after stimulation, and plasticity
based on markers of LTP or long-term monitoring, are
related. The application of tDCS in neurorehabilitation
is not surprising, since it can be used to increase or de-
crease brain function and learning [47–50], and it is
considered safe and well-tolerated [51, 52]. Evidence
from DCS clinical trials is further supported by animal
models of injury recovery [39, 53–57].
The biophysics and nuance of using DCS to produce

lasting changes in brain function have been extensively
studied. The cellular targets of DCS include the soma of
pyramidal neurons [58, 59], axon terminals/synapses
[60–62] and dendrites [45]. In each of these cases, mem-
brane polarization of the cellular targets by current flow
is the initial cellular mechanism of action. One key nu-
ance is that there is no such thing as an “only depolariz-
ing” or “only hyper-polarizing” mode of DCS; rather,
every neuron has compartments that are depolarizing
and compartments that are simultaneously hyperpolar-
ized during DCS [60, 63]. Changing the polarity of
stimulation reverses the polarization in each given com-
partment. For example, it is correct to say that “anodal”
DCS will depolarize the somas of most cortical pyram-
idal neurons while recognizing that other compartments
of those neurons and of neighboring cells will be simul-
taneously hyperpolarized [59]. Despite the complex
polarization pattern, there can be significant directed
changes in function (as noted above), but the role of
polarity may vary with nuance in underlying brain
activity [45].
A further key nuance of DCS is “functional targeting”

[64]. Because tDCS may be too low intensity to generate
activity de novo, the idea is that specific brain networks
become activated by a task (e.g. rehabilitation training)
and, because they are already active, these networks (and
not others) become more sensitive to tDCS [39]. For

example, only synapses already undergoing plasticity
would be modulated by DCS, while inert synapses would
not be activated or modulated [45]. This feature can be
a virtue since it supports exquisite selectivity: only those
brain regions activated by a task would be susceptible to
be modulated by tDCS. These results also explain the
dependence of tDCS on brain state [64–68], which can
be understood not as a limitation but rather a factor to
control and leverage [69].
The flow of electrical current through the brain

changes by the presence of a lesion [70–73] or injury
[74]. Computational models of current flow can be used
to account for and optimize current delivery in such
cases [75]. While which current flow pattern is best
suited for a given clinical or rehabilitation indication is
still an open question (relating to the mechanisms of
DCS), the current flow models are already validated [76].
Alternative or complementary mechanisms of DCS in-

clude modulation of oscillations [67, 77], glial function
[78, 79], vascular function [80, 81], growth and mobility
[82, 83] or neurogenesis [84, 85]. In addition, over a dec-
ade of systematic research in animals and human trials
have demonstrated differences in the dose and brain-
state dependent aspects of tDCS modulation, particularly
in the motor system. For example, changing the mon-
tage [6, 34, 86], polarity [66], intensity [87, 88], duration,
concomitant medication [89], or task may qualitatively
change outcomes [9]. It is important to recognize that
the decades of work on DCS and ongoing emerging in-
sights into the nuances of stimulation not necessarily a
deficiency of understanding tDCS. Conversely, it reflects
that tDCS is a technique far better characterized than
most interventions [90–92] and the inherent complexity
of brain function. In the context of neurorehabilitation,
ongoing research is thus not directed to the general
plausibility of enhancement by tDCS (as a tool to modu-
late excitability and plasticity) but rather specifically how
to account for these nuances in order to optimize re-
habilitation outcomes [93–95] including reducing vari-
ability in responsiveness [96–99].

Fig. 2 Examples of tDCS montage and the current flow to stimulate left primary motor cortex (M1). a Anodal stimulation delivered on left M1
depolarizes the resting membrane potential and increases neuronal excitability. b Cathodal stimulation on right M1 hyperpolarizes the resting
membrane potential and decreases neuronal excitability. c Simultaneous stimulation of left M1 (anode - increasing excitability) and right M1
(cathode - decreasing excitability)
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tDCS and brain connectivity on the motor cortex
Brain connectivity research focuses on anatomical path-
ways, interactions and communications between differ-
ent regions of the central nervous system. The
connectivity analysis based on brain activity can be un-
directed or directed and classified as functional, if it
measures the statistical dependence of signals, or effect-
ive if it takes into consideration the causal relationship
between signals. The regions of interest can be defined
in micro- or macro-scale levels and their interaction can
be considered as static or dynamic. Brain connectivity
methods have been substantially applied to the study of
the motor cortex, extracting new features from resting
state, motor and imagery tasks. The underlying networks
are built using EEG, functional magnetic resonance im-
aging (fMRI) and functional near-infrared spectroscopy
(fNIRS) data and then assessed through functional con-
nectivity (FC) or effective connectivity (EC) measures,
for healthy and pathological subjects [100, 101]. See
Fig. 3d for an example of brain networks activation dur-
ing tDCS and the respective connectivity matrix
visualization.
The first report of tDCS effects on motor cortical con-

nectivity is the work of Polaina and collaborators [102].
They applied anodal tDCS over M1 in resting state and
during motor tasks performed by healthy subjects. The
FC from the EEG signals in different frequency bands
were calculated and compared before and after the
stimulation. They observed significant intrahemispheric
and interhemispheric connectivity changes in all bands
and conditions. Specifically, in theta and alpha bands,
FC increased between frontal and parietal-occipital areas
after the stimulation, during hand movements, eviden-
cing robust tDCS-induced alterations in the sensory-
motor brain network. Further studies analyzed the brain
connectivity from EEG recordings after the stimulation
of the motor cortex. Hordacre and colleagues [103] in-
vestigated the anodal tDCS in chronic stroke patients on
the lesioned M1. The FC analysis showed stronger con-
nectivity between ipsilesional parietal cortex and con-
tralesional frontotemporal cortex, in the alpha band,
associated with the increase of corticospinal excitability
following the stimulation. This association was not ob-
served in sham stimulations and suggests FC as a bio-
marker of therapy response. Baxter and coauthors [104]
studied the effects of anodal tDCS on the motor cortex
connectivity during motor imagery tasks. The target was
the left sensorimotor cortex and they calculated the EC
between EEG channels related to the frontal and parietal
regions. Comparing pre- and post-stimulation condi-
tions, the findings in the alpha band reveal different cor-
relates in a task-specific manner. During right-hand
imagination, EC increased from the ipsilateral PMC and
contralateral sensorimotor cortex to the target area. In

addition, during left-hand imagination, EC increased
from the target area to multiple regions across the
motor cortex. The results showed a task-specific modu-
lation between tDCS and brain network organization.
Gaxiola-Tirado and collaborators [105] examined the
stimulation effects during motor imagery tasks. They
found strong FC in alpha and beta bands between cen-
tral channels, following tDCS on the lower limbs. In the
sham group, they noticed more random connections in
these regions.
An increasing number of studies have considered

resting-state functional magnetic resonance imaging
to understand the connectivity pattern shifts in the de-
fault mode network observed after tDCS. Sankarasu-
bramanian and colleagues [106] reported a
Thalamocortical networks study focused on the pain
matrix. They demonstrated that anodal M1 tDCS in-
creased FC between ventroposterolateral area and sen-
sorimotor cortices and also between motor dorsal and
motor cortices. The findings suggest that M1 stimula-
tion modulates FC of sensory networks. Lefebvre et al.
[107] showed that a single session of dual-tDCS com-
bined with motor skill learning increases FC between
M1 and PMd of the damaged hemisphere in chronic
stroke patients, supporting the hypothesis that
changes in FC correlate with recovery. Chen and coau-
thors [108] analyzed FC in individuals with stroke.
The connectivity increased between ipsilesional motor
cortex and contralesional premotor cortex after tDCS
in motor rehabilitation, suggesting that the activation
of interactions between motor and premotor cortex
might be beneficial for stroke motor recovery. Sehm
and colleagues [109] studied different setups of tDCS
over the M1. The bilateral and unilateral M1 tDCS in-
duced a decrease in interhemispheric FC during
stimulation and the bilateral M1 tDCS induced an in-
crease in intracortical FC within right M1 after the
intervention. Depending on the tDCS montage, the con-
nectivity analysis revealed different effects in M1 processing
and can explain the induced changes in motor performance
and learning from the perspective of the neural networks
modulation. Rosso et al. [110] examined brain connectivity
after cathodal tDCS applied to the right inferior frontal
gyrus, before a picture-naming task performed in healthy
individuals. They found greater FC between the right Bro-
ca’s area and the supplementary motor area (SMA) and
these findings were correlated to the improvement of learn-
ing abilities, in the sense that subjects named pictures faster
after cathodal relative to sham tDCS.
Besides EEG and fMRI data, tDCS effects on brain con-

nectivity can also be examined based on hemodynamic
changes. For instance, Yan et al. [111] observed the resting
state fNIRS and showed that the FC between intracortical
regions decreased during anodal tDCS in the motor cortex

Morya et al. Journal of NeuroEngineering and Rehabilitation          (2019) 16:141 Page 4 of 29



indicating a relationship between brain network changes
due to the stimulation and the hemodynamic responses.
There is extensive literature investigating electrical

brain stimulation and FC. Therefore, future work should
investigate more correlates between tDCS and directed
brain interactions through EC measures, in different
frequency bands, including cross-frequency causality.
These time-varying causal brain networks captured by
EC can modulate power spectra and behavioral re-
sponses [112], opening new possibilities, advancing the
state of art of the tDCS therapy on the motor cortex and
extending the knowledge on the effects beyond the tar-
get area. Figure 3 summarizes the physiological basis
and mechanisms of tDCS.

tDCS as a motor neurorehabilitation tool in
neurological disorders
Neurological disorders resulting from injury or disease
of the nervous system are a significant cause of disability
and death worldwide [121]. Patients with disability due
to neurological conditions have significant socioeco-
nomic implications due to long-term functional and
psychosocial issues, and requirement for specialized

rehabilitation services [122–124]. Advances in the un-
derstanding of brain function, recovery from injury and
neuroplasticity have provided a basis for developing new
technologies that are slowly becoming part of neuroreh-
abilitation approaches, especially the increasing applica-
tion of tDCS [125–127]. This review summarizes the
applications of DCS in the most common neurological
disorders investigated in tDCS trials.

Stroke
Rehabilitation of motor function after stroke is the most
thoroughly studied clinical application of tDCS in neu-
rorehabilitation. Beneficial effects of tDCS on post-
stroke rehabilitation have been reported in meta-
analyses concerning the upper [128–131] and lower-
limb functions [132] and mobility [49, 132, 133].
Based on the model of post-stroke abnormal inter-

hemispheric inhibition [134, 135], three different mon-
tages of stimulation to improve motor recovery are
commonly used: anodal tDCS (a-tDCS) over the ipsile-
sional hemisphere, cathodal tDCS (c-tDCS) over the
contralesional hemisphere, and dual tDCS where the
anode is placed over ipsilesional and cathode over

Fig. 3 Physiological basis and mechanisms of tDCS. a Several studies in the last ten years support tDCS technologies with beneficial results using
conventional tDCS [37, 113], High-Definition tDCS [37, 114] and individualized High-Definition tDCS [70, 71, 75, 115]. b The current flow direction
affects differently dendrite [45, 116], soma [58, 59], axon terminal [60–62, 117], glia [78, 79] and endothelial cells [80]. Anodal stimulation
hyperpolarizes apical dendritic layer (blue) and depolarize soma (red) of pyramidal cortical neurons. c The resultant tDCS effects reported are
related to modified excitability [60, 63, 76, 118], neuroplasticity [8, 44, 45, 119] and neural network oscillation [67, 77, 120]. d Simulation of four
brain networks during tDCS with a connectivity (or adjacency) matrix between a given pair of regions by connectivity strength [100, 102]
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contralesional hemisphere simultaneously [17, 47, 52].
These three montages are supposed to help to normalize
the balance of transcallosal inhibition between both
hemispheres resulting in improved motor function [136].
However, dual montage (electrode size: 4 × 4 cm or 5 × 7
cm; 1.5 or 2 mA; 30–40min; 5–10 sessions; Fig. 4b)
[140, 141] seems to be superior in reducing motor im-
pairment when compared with anodal tDCS (a-tDCS) or
c-tDCS polarity [129]. Nevertheless, tDCS application
guided by imbalanced interhemispheric inhibition may
be inappropriate in patients with greater cortical damage
and more severe motor impairment [125]. fMRI studies
demonstrated that an increased contralesional cortical
activation may be an adaptive reorganization in severely
affected patients [151, 152]. Therefore, the choice of
tDCS montage should take each individual patient’s
motor functional network into consideration.
Apart from M1 [153–157], other areas such as the SMA

[158], primary somatosensory cortex (S1) [159] and pre-
motor cortex (PMC) [160] and cerebellum [50, 161, 162]
have been targeted in tDCS studies for stroke motor

rehabilitation. Overall, patients in acute [155, 163], sub-
acute [164] and chronic phase [156, 157, 161] have shown
improvement in motor impairment after tDCS. A previous
meta-analysis reported that tDCS showed a more signifi-
cant effect size on motor recovery in chronic stroke when
compared to acute stroke [129]. When combined with
conventional treatment, tDCS can reduce motor impair-
ment in patients with stroke more than motor training
isolated [141]. Stimulation has been applied before [153,
154, 157], during [155, 156, 164] and after motor training
[165, 166]. Currently, there is insufficient evidence for
recommending specific targeted cerebral areas, stroke
phase, type of combined therapy and order of stimulation/
therapy application for all patients. The magnitude of
tDCS effect on stroke motor recovery appears to be
influenced by multiple factors such as stroke severity
and chronicity, lesion size and location, and cortical
tract integrity [52, 166]. Future research should focus
on developing the personalized tDCS protocol based
on individual patient factors to lead to better motor
recovery.

Fig. 4 Examples of electrode montage. a Spinal Cord Injury [137]: 5x7 cm; 2 mA; 20 min; 10 sessions; the anodal electrode placed over
C3/C4 contralateral to the targeted arm and the cathodal electrode located over contralateral supraorbital area. Musculoskeletal disorders/
Pain [18, 138]: 5x7 cm; 2 mA; 20 min; anodal C3/cathodal Fp2; 5 sessions. Motor learning [139]: 5x5 cm; 1 mA; 20 min; 5 sessions; the
anodal electrode placed over a presumed “target” (eg.: left M1 to target right upper limb, C3), with the cathodal electrode located over
the contralateral supraorbital region (eg.: right supraorbital area, Fp2). b Stroke [140, 141]: 4x4 cm or 5x7 cm; 1.5 or 2 mA; 30-40 min;
5-10 sessions; dual tDCS where the anodal is placed over ipsilesional (eg.: left M1) and cathodal over contralesional hemisphere (eg.: right
M1); Dystonia [142]: 5x7 cm; 2 mA; 20 min; 1 session; simultaneous inhibitory and excitatory stimulation on M1 (the cathodal electrode on
the affected M1 and the anodal electrode on the unaffected M1); Traumatic Brain Injury [143]: 2x2 cm; 1.5 mA, 15 min; 24 sessions
(3 days/week); the anodal electrode placed over the ipsilesional M1 and the cathodal electrode over the contralesional M1. c Language
[144]: 5x7 cm; 2 mA; 20 min; the cathodal placed at FC3 and the anodal at FC4. d Language [145]: 5x7 cm; 2 mA; tDCS started 4 min
before the beginning of the task and was delivered for the whole course of the task execution (about 2 min); the cathodal electrode
positioned over the left M1 and the anodal electrode placed on the skin overlying the left shoulder region. e Psychiatric disorders
(Obsessive-compulsive disorder) [146, 147]: 5x5 cm; 2 mA; 20 min; 10 sessions [148]; or 5x5 cm; 2 mA; 30 min; 20 sessions [149];
cathodal placed bilaterally over the SMA and the anodal positioned in the deltoid. f Parkinson disease [150]: array of 6 Ag/AgCl electrodes/
“Pi-electrodes” of 3 cm2 contact area; 20 min; left DLPFC and M1 (multi-target) determined according to the 10–20 EEG system
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Parkinson disease (PD)
Advances in the potential therapeutic effects of repetitive
transcranial magnetic stimulation (rTMS) [167, 168]
have encouraged the use of tDCS as an alternative ther-
apy in PD. Although systematic reviews have not
reported the benefit of tDCS for PD motor rehabilitation
[92, 169, 170], nevertheless preliminary studies have sug-
gested that tDCS could ameliorate bradykinesia [171],
freezing of gait [150, 172], balance and functional mobil-
ity [173–177]. However a decrease in PD motor
performance was reported [178] and pointed out essen-
tial aspects, such as methodological variability among
studies, participant characteristics, tDCS protocols,
stimulation target, outcome measures, and study design
to support congruent findings and conclusive evidence
in future reviews.
tDCS studies in PD motor function used distinct

stimulation targets, such as the M1 [172], SMA [174,
175], cerebellum [179] and dorsolateral prefrontal cortex
(DLPFC) [180, 181]. Other studies used simultaneous
stimulation target for multiple cerebral areas [150, 171,
177]. A multitarget stimulation (Fig. 4f) provided a more
significant benefit when compared to a single target
[150]. Most of these PD therapeutic studies used a-tDCS
montage [92], and only few studies investigated tDCS ef-
fects combined with conventional therapy in PD [173–
175, 182, 183]. Kaski et al. [173] and Costa-Ribeiro [174]
demonstrated that the combination of tDCS and motor
training improves gait performance more than the train-
ing itself. In contrast, Manenti et al. [182] and Schabrun
et al. [183] found a non-significant benefit of tDCS com-
bined with motor training. It should be emphasized that
tDCS does not replace antiparkinsonian drug, but com-
plements the therapy. As tDCS-induced plasticity is
dependent on the dopamine concentration [184], a low
dopamine level can impair the tDCS effect [185]. There-
fore, future innovative studies should consider the opti-
mal dopamine concentration during tDCS therapy.

Dystonia
Currently, the beneficial effects of tDCS on motor re-
habilitation in dystonia are modest and highly specula-
tive since few studies, is most case reports or small case
series, have suggested a potential therapeutic role of the
technique [186–190]. Considering that increased excit-
ability or loss of inhibition at multiple levels within and
among cortical motor areas was reported in dystonia
[191, 192], a possible therapeutic strategy would be to
increase the inhibitory cortical drive. Indeed, inhibitory
low-frequency rTMS over M1 decreased writing pres-
sure in patients with focal hand dystonia [193]. A similar
beneficial effect was obtained when c-tDCS was applied
for 5 days over bilateral motor/premotor areas in two
musicians with focal hand dystonia [189]. However,

failures of c-tDCS to improve fine motor control in
writer’s cramp [194] and musicians cramp patients [195,
196] were reported after short intervention period (1–3
sessions). Simultaneous inhibitory and excitatory stimu-
lation on M1 (electrode size: 5 × 7 cm; 2 mA; 20 min; 1
session; c-tDCS on the affected M1 and a-tDCS on the
unaffected M1; Fig. 4b) combined with sensorimotor
training for 5–10 sessions seems also promising for
therapeutic purposes in dystonia [142, 188]. Furuya et al.
[142] reported that tDCS fails to improve fine motor
control when stimulation is applied without motor train-
ing (during rest). Cerebellum has also been a target of
tDCS studies in dystonia; however, the results are still
contradictory findings [187, 197]. Large clinical trials
with multiple-sessions are still required to elucidate the
therapeutic role of tDCS on neurorehabilitation of dys-
tonia and to implement it in clinical practice.

Spinal cord injury (SCI)
Very few studies have examined the effects of DCS in
improving motor functions after SCI [198]. Evaluations
through multiple-sessions have shown improvement in
hand [137] and gait function [199] when stimulating
M1 with a-tDCS (electrode size: 5 × 7 cm; 2 mA; 20
min; 10 sessions; the anodal electrode placed over C3/
C4 contralateral to the targeted arm and the cathodal
electrode located over contralateral supraorbital area;
Fig. 4a). Although Kumru et al. [200] found no benefit
of combining tDCS with motor training, others studies
suggest that pairing tDCS with motor training provides
an advantage in improving motor function in individ-
uals with SCI [137, 199, 201]. tsDCS, a promising non-
invasive stimulation of central nervous system through
a direct current over the spinal cord, emerged as an in-
novative tool [202]. In healthy individuals, although still
debatable [203], tsDCS have been suggested to modu-
late spinal networks [204, 205]. Therefore, it is expected
that tsDCS, modulates spinal function, and motor out-
comes in subjects with SCI. Indeed, the findings of
Hubli et al. [206] have shown that anodal tsDCS can
modulate spinal neuronal circuitries after SCI. Powell
et al. [207] have shown that cathodal tsDCS can in-
crease corticospinal excitability contralateral to the ref-
erence electrode and decrease corticospinal excitability
ipsilateral to the reference electrode. Further studies
are needed to understand the extent to which tsDCS
can be a complementary treatment to improve motor
function in SCI patients.

Multiple sclerosis (MS)
Over the recent years, the effects of tDCS have been
assessed on various MS-related complications including
sensory and motor deficit [208–210], spasticity [211],
pain [212, 213], fatigue [214–216] and cognitive
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disorders [217]. Among these, fatigue is the symptom
more frequently addressed for tDCS therapeutic studies
[218]. Overall, these studies suggest that the application
of a-tDCS for 5 consecutive days could decrease fatigue
symptoms, but the stimulation site differs among stud-
ies, and positive effects were found when tDCS was
applied over bilateral S1 [216, 219] or M1 [214]. Over
left DLPFC, beneficial [220, 221] or no effect [215] of
tDCS was reported. Regarding motor performance, there
is speculation about the possibility of tDCS having thera-
peutic potential but based only on a few single-session
studies [208, 210]. More significant therapeutic effects
are expected from the application of multiple tDCS
sessions in coming studies.
In summary, tDCS probably helps the brain to estab-

lish new patterns of activity that support functional
recovery. Despite the challenge in drawing a definitive
conclusion for all neurological disorders, tDCS has
emerged as a promising therapeutic tool for motor
neurorehabilitation. However, the successful implemen-
tation of tDCS in clinical practice will rely on identifying
biological markers which can predict responders and on
determining optimal stimulation protocols that take
individual patient factors into account. In addition, the
rationale for the use of tDCS in neurorehabilitation
settings is to provide additional benefit beyond conven-
tional therapy (i.e., to offer an adjunctive approach for
patients with neurological disorders).

Traumatic brain injury (TBI)
TBI can cause a wide range of impairments, including
cognitive, sensory or motor impairments. Some studies
have considered the use of tDCS for non-motor impair-
ment [222, 223], but evidence of tDCS for motor neuror-
ehabilitation after TBI is currently lacking [224–226]. We
found one tDCS-study that included trauma-injured con-
ditions (TBI and stroke) focusing on motor recovery.
Motor improvement was reported after 24 sessions of
bihemispheric tDCS over motor primary cortex (electrode
size: 2 × 2 cm; 1.5 mA; 15min; 24 sessions (3 days/week);
the anodal electrode placed over the ipsilesional M1 and
the cathodal electrode over the contralesional M1; Fig. 4b)
associated to physical therapy [143]. This preliminary hu-
man result and some from animal studies [119, 227] have
supported the potential benefit and safety of DCS after
TBI. However, the diffuse damage associated with TBI,
making it difficult to determine the stimulation target,
could limit the use of tDCS as a therapeutic modality to
improve motor outcomes after TBI.

tDCS as a motor neurorehabilitation tool in
musculoskeletal disorders
Musculoskeletal disorders involve a set of diseases com-
ing from skeletal, articular and muscular systems, and

associated with dysfunction from the cellular to
biomechanical levels. Plasticity in the brain, however,
has been often neglected in people with musculoskeletal
disorders, and may be a factor influencing disease initi-
ation and maintenance. Reorganization of the motor
cortex has been described in many musculoskeletal con-
ditions (see below). Unfortunately, current evidence
involves the combination of musculoskeletal disease and
pain, generally chronic pain (CP), making it difficult to
disentangle those conditions to understand whether
reorganization is related to the musculoskeletal disorder
per se, or to CP.
Neurophysiological changes associated with musculo-

skeletal dysfunction associated to CP have been studied
with TMS. A review of studies on migraine, musculo-
skeletal and neuropathic pain has reported no difference
in resting motor threshold and motor evoked potential
(MEP) between people with or without CP [228]. When
only TMS studies on musculoskeletal pain are individu-
ally analyzed, MEP is reported to be higher in low-back
and patellofemoral pain, but not neck pain, fibromyalgia,
arthritis or myofascial pain [228]. TMS motor maps,
however, are consistently rearranged. Previous studies
have demonstrated changes in the primary motor
muscle representation in different conditions. Low back
pain, for example, is related to a decrease in the multifi-
dus cortical map size which also has its center of activity
(Center of Gravity) superposed with the superficial
erector muscles [229, 230]. This abnormal representa-
tion may be associated with muscle activation dysfunc-
tion, altered activation/coordination of tonic/phasic
muscles, and impaired biomechanical patterns of move-
ment. The same has been shown for the quadriceps
muscle in people with knee pain [231] and the extensor
digiti muscles of people with tennis elbow [232]. Those
changes in the motor maps might constitute key factors
in sustained muscle pain [233] and have been associated
with disease severity [229].
Therefore, TMS findings from musculoskeletal

dysfunction indistinguishable from the presence of CP
include a variable increase of MEP and motor maps
rearrangements in the M1. These findings characterize a
state of maladaptive plasticity, where changes in the cen-
tral nervous system organization and functioning lead to
decreased function through abnormal sensorimotor
activity and pain.

tDCS as a tool to counteract maladaptive plasticity in
chronic musculoskeletal pain
Electrical currents can be used to modulate pain in
various manners. One of its uses is by applying them
directly on the scalp of cortical brain structures to
modulate neural networks, inhibiting or stimulating
endogenous brain activities (in sessions of 20 to 30 min
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and for at least five to ten consecutive days). They can
also be applied to peripheral (extra cephalic) anatomic
structures with the aid of surface or needle electrodes
applied to the skin.
Though Peripheral Electrical Stimulation (PES) is not

the topic of the present review, the combination of tDCS
with PES has gained prominence as a method to potenti-
ate the effects of tDCS. The application of monophasic
or biphasic currents in musculoskeletal regions and/or
over nerve trunks of peripheral nerves within less than
30min at the sensory threshold and with frequencies
≧10 Hz produces an inhibition of intracortical synapses
[234]. On the other hand, stimulation performed at the
sensitive threshold or low level of motor activation that
promote weak contractions without fatigue can increase
cortical excitability [234, 235]. In this last case, electrical
currents should be applied for 60 to 120 min (usually 90
min) with frequencies < 10 Hz. As such, depending on
the duration, current intensity and frequency, PES can
also modulate the M1, producing analgesia. The com-
bination of excitatory a-tDCS with inhibitory sensory
PES has been shown to potentiate the effects of the first,
although the exact mechanisms associated with this
combination are unknown [236, 237]. Hence, tDCS asso-
ciated with PES may be used effectively in the control of
CP associated with musculoskeletal and neuropathic
conditions.
The most commonly used targets for neuromodulation

of musculoskeletal dysfunction and CP are the M1 (elec-
trode size: 5 × 7 cm; 2 mA; 20min; anodal C3/cathodal
Fp2; 5 sessions; Fig. 4a) and left DLPFC [18, 138]. Previ-
ous work with TMS has demonstrated that stimulation
of these regions modulates pain-related areas via the ac-
tivation of dopaminergic, glutamatergic, adrenergic, and
cholinergic pathways [238]. In the 90’s, a group of Japa-
nese neurosurgeons were seeking targets for implants in
the cortex and recording thalamic activity while doing
cortical stimulation to look for cortical areas related to
pain in cats [239]. At first, they expected the S1 to be
the best target. However, since they were next to the
M1, they tested it by chance. They observed that there
was decreased thalamic spike activity only when they
stimulated the M1 and there was fairly no response to
the stimulus of the S1. Later on, this cortico-thalamic
pathway has been shown to be involved in the modulation
of the grey periaqueductal substance, the cingulate cortex,
and indirectly the amygdala, primary and secondary S1,
spinal cord, and trigeminal ganglion [240]. Thus, the M1
is a good target for neuromodulation because it reaches a
wide network related to pain control. a-tDCS applied to
the M1 can probably control pain through the restoration
of cortical modulation of the pain network [241]. It also
seems that the stimulation has a somatotopic effect, that
is, the closer to the cortical painful representation, the

better the result [242]. However, the M1 stimulation also
has a diffuse analgesic effect, and diffuse pain syndromes
may be treated by this technique [243, 244].
The prefrontal cortex, another target for modulation

of pain, is an executive area and directly influences the
M1. This area is dysfunctional in CP [245], suggesting
that its modulation would be a relevant goal. DLPFC
stimulation has the potential to promote pain control, as
it modulates the M1 and is dysfunctional in CP patients.
However, its effectiveness in promoting analgesia has
been refuted in many studies [92, 246, 247], although it
would be interesting in the control of relevant aspects
associated with CP such as decreased cognitive perform-
ance and depression.
a-tDCS of the M1 to treat CP patients has been vali-

dated in different pain syndromes such as fibromyalgia,
neuropathic pain, and musculoskeletal pain, among
others [18, 138]. The European Federation of Clinical
Neurophysiology has attributed a level C of recommen-
dation in the treatment of lower limbs pain associated
with spinal cord injury and a level B in the treatment of
fibromyalgia [92]. However, a comprehensive meta-
analysis has shown that a-tDCS over the M1 has only a
minimal clinical effect in the control of pain, but a con-
sistent impact on increasing quality of life in chronic
pain patients [247]. A recent consensus recommended
as a level A for a low (from 20 to 30%) to moderate
(from 30 to 50%) benefit in the control of pain associ-
ated to fibromyalgia; a level B recommendation for
neuropathic pain, abdominal pain, musculoskeletal pain,
and migraine and a level A of recommendation against
the use of a-tDCS in the M1 alone in low treatment of
low back pain [138]. The combination of a-tDCS in the
M1 with sensory PES at the painful area has been shown
to be a way of potentiating the effects of tDCS. Schabrun
et al. [237] showed that this combination was the most
advantageous in decreasing pain in increasing multifidus
M1 map volume (a measure of the total excitability of
the cortical representation) in patients with low back
pain. Hazime et al. [248] found similar results, showing
that a-tDCS over M1 associated with 100 Hz sensory
PES lead to a greater clinical effect than tDCS and PES
alone or sham stimulation.

Facilitation of motor learning and consolidation
by tDCS in patients and athletes
Motor control refers to the process of achieving a de-
sired coordinated movement by the nervous system
structures. Motor cortex projections to motor circuits
within the spinal cord are closely linked to muscle con-
trol [249]. Motor learning depends on the motor cortex
to learn new movements, anticipate or adjust the desired
action [250]. Motor cortex learning-related plasticity in-
volves synaptic strength [251] and dendritic spine
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growth [252]. Stabilization of these modifications in-
volves intracellular signal transduction cascades, neur-
onal protein synthesis, and neural networks [253]. A
fundamental question arises as to how tDCS modulates
neuronal polarization. The low current up to 2 mA
through non-invasive electrodes on the scalp [35] modu-
lates the neuronal excitability accordingly with electrode
polarity. In general, it is assumed that anodal stimulation
current enters the tissue inducing excitatory effects, and
cathodal stimulation current exits the tissue inducing in-
hibitory effects. Anodal stimulation increases neuronal
firing rates and intracellular Ca+ 2 concentration [60]
which is possibly related to long-term potentiation
mechanisms [254]. Whereas tDCS biophysics effects
modulate neuronal membrane polarization [255], a
second question then arises whether tDCS benefits
motor learning on rehabilitation and sports perform-
ance. Nitsche and Paulus [43] demonstrated a polarity-
dependent modulation of motor cortex excitability with
tDCS (up to 1mA, anode motor cortex, cathode fore-
head above the contralateral orbitofrontal). MEP ampli-
tude of right abductor digiti minimi muscle was higher
after anodal stimulation. As the MEP amplitude is
related to the corticospinal excitability [256], tDCS
appears to be effective to modulate motor learning in
both, health and disease conditions. Several studies have
reported anodal M1 stimulation related to behavior
improvement, such as executive function and rowing
performance [257], self-perception, but not swimming
performance [258], learning novel skill [33, 139, 259],
isometric contraction [260], countermovement jump
performance test [261], motor imagery and finger tap-
ping reaction time (RT) in elderly [262], and cognitive
and visual attention performance [263]. Regarding motor
learning (electrode size: 5 × 5 cm; 1 mA; 20min; 5
sessions; Fig. 4a), the anodal electrode has been placed
over a presumed “target” (eg.: left M1 to target right
upper limb, C3) with the cathodal electrode located over
the contralateral supraorbital region (eg.: right supra-
orbital area, Fp2) (Reis et al. 2009). However, the tDCS
biophysics effects on the nervous system is beyond the
M1. Shimizu et al. (2017) used anodal cerebellar tDCS,
and showed enhanced transfer performance on fine
motor sequence learning and generalization. On the
other hand, Foerster et al. (2017) showed that cathodal
cerebellar tDCS impaired static balance [264]. As these
behavior changes depend on the tDCS biophysics (polar-
ity, current, time) and neurophysiology (brain target,
function, connection), such neuromodulation method is
challenging human limits. In spite of improving learning
and motor performance, tDCS also has a boost effect
when it reduces fatigue perception [21, 265–267].
Therefore, the tDCS effects shown in this growing range

of protocols exploring intensity, dosage and electrode

assembly [33, 259, 268–271] are supporting new ap-
proaches, not only to sports [259], but to promote physical
and cognitive rehabilitation in several pathological condi-
tions [32, 33]. The rationale, for example, is to use anodal
tDCS to stimulate the lesioned motor cortex or cathodal
tDCS to inhibit the contralateral motor cortex, and im-
prove motor learning and motor skills [272].
Another aspect of motor learning which athletes excel

on is timing. Learning when to perform an action (and
when to withhold responding), and doing so with preci-
sion (i.e., with as little variability as possible) is import-
ant in virtually any sport modality. Although the
number of studies focusing on temporal aspects of
motor learning is still small, there is some evidence for
the beneficial effects of tDCS on motor timing. For
example, Arias et al. [273] tested whether stimulation of
M1 improved performance in a fast arm reaching task.
In this procedure, healthy participants had to reach for
an object as fast as possible after a signal (auditory cue)
was presented. The results showed a premotor reduction
time after either anodic or cathodic stimulation of M1.
That is, the time between signal and movement-related
EMG onset decreased compared to sham stimulation.
Moreover, the authors showed that fatigability (i.e., in-
creased reaching times when the trial was repeated) was
also avoided by real stimulation.
Very few studies have also shown that non-invasive

brain stimulation (NIBS) may improve temporal process-
ing in larger temporal scales, in the range of seconds to
minutes (referred to as interval timing by the timing
community). Mainly, these studies have suggested that
tDCS over the posterior parietal cortex (PPC) enhances
temporal discrimination [274–276]. Moreover, when this
area is disturbed by transcranial random noise stimula-
tion (tRNS), temporal performance is disrupted [277].
Finally, stimulation of DLPFC [148] and primary audi-
tory (A1) and visual cortices (V1) [149] also seems to
affect temporal performance. Despite these promising
results, the effects of tDCS on temporal performance are
still largely unknown, but they may contribute to the un-
derstanding of the neural basis of timing.

Other effects of motor areas modulation
Underappreciated motor cortex stimulation for
psychiatric disorders
The motor cortex is usually not tDCS as the first target
for most psychiatric disorders. In fact, the prefrontal
cortex is usually stimulated for depression and schizo-
phrenia [278–280]. Notwithstanding, the motor cortex
role in psychiatric disorders might be underappreciated
according to evidence from motor cortical excitability
studies in these disorders. For instance, in a study in-
volving 60 patients with major depressive disorder and
21 controls, patients presented decreased cortical silent
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period values as a measure of cortical inhibition com-
pared to controls. In addition, atypical depression pre-
sented a distinct cortical excitability pattern
characterized by decreased cortical inhibition and in-
creased cortical facilitation compared to other depres-
sion subtypes [281]. In fact, a meta-analysis investigating
motor cortical excitability in psychiatric disorders
showed that inhibitory deficits are a ubiquitous finding
across major psychiatric disorders and enhancement of
intracortical facilitation is specific to obsessive-
compulsive disorder [282].
There is also evidence that stimulation of non-motor

areas affects motor cortical excitability in psychiatric dis-
orders. In schizophrenia, a recent study performing non-
motor, sham-controlled, double-blinded tDCS (anode
and cathode positioned over the left prefrontal and tem-
poroparietal junction, respectively) found changes in
cortical inhibition after active but not sham tDCS [283].
This is not surprising as electric current simulation
models show that under this tDCS montage motor cor-
tical areas are also activated [184]. Particularly, tDCS
might be an interesting option in patients with schizo-
phrenia and prominent motor symptoms such as catato-
nia [285, 286].
Moreover, motor cortical excitability assessments at

baseline might be useful to predict antidepressant
response of tDCS, as, in a large clinical trial in de-
pression, it was found that lower intracortical inhib-
ition values (increased GABAA-mediated inhibition)
at baseline were associated with lower depression im-
provement for anodal - left / cathodal - right dorso-
lateral prefrontal cortex stimulation [12]. This is
interesting as it suggests that motor cortical excitabil-
ity is a biomarker for antidepressant response, further
unveiling the role of motor cortex in depression and
antidepressant response.
Finally, tDCS treatment for obsessive-compulsive

disorder directly targets the SMA, as this brain area is
involved in dysfunctional thalamic-cortical circuits
related to obsessive-compulsive disorder pathophysi-
ology. Promising results were observed in a pilot study
investigating the efficacy of cathodal vs. anodal stimula-
tion of SMA in 12 patients with obsessive-compulsive
disorder [147]. The results have shown that cathodal
stimulation of SMA (electrode size: 5 × 5 cm; 2mA; 20
min; 10 sessions; Fig. 4e) for treatment-resistant
obsessive-compulsive disorder [147]. In fact, a larger,
randomized, sham-controlled trial investigating the effi-
cacy of cathodal tDCS over the SMA (electrode size: 5 ×
5 cm; 2 mA; 30min; 20 sessions; Fig. 4e) in 44 patients
with obsessive-compulsive disorder will help further
clarifying the involvement of motor cortex in obsessive-
compulsive disorder pathophysiology and clinical re-
sponse [146].

Language and embodied cognition
Theoretical advances in cognitive neuroscience, particu-
larly regarding the neural instantiation of language,
emphasize the embodied nature of human cognitive
functions. In this regard, the effects of modulating motor
networks activity (e.g., using tDCS) on language provide
an important framework for testing embodied theoret-
ical cognition models. The M1, for instance, is arguably
enrolled in functions extending far beyond the mechan-
ical implementation of motor programs, which includes
high order functions such as memory [287] and the pro-
cessing of action-related abstract concepts [288]. Both
passive listening and categorization of verbs referring to
upper or lower reliably reduce corticospinal excitability
in a somatotopic fashion, according to limb recruited by
the verb [289]. In a single pulse TMS study, the ampli-
tude of MEP in the leg and arm muscles were shown to
be selectively modulated in a categorization task of
learned names of soccer or tennis players [290]. Cru-
cially, words arbitrarily associated with tennis categories
seemed to be sufficient to modulate corticospinal repre-
sentation of leg muscles, reinforcing that M1 is involved
in processing abstract action-related concepts. In a re-
lated study on the role of the M1 in speech perception,
a-tDCS, c-tDCS or sham tDCS was applied to the left
M1 during a task of picture recognition simultaneously
presented with a sentence, both with or without motor
content [145]. c-tDCS (electrode size: 5 × 7 cm; 2 mA;
tDCS started 4min before the beginning of the task and
was delivered for the whole course of the task execution,
about 2 min; the cathodal electrode positioned over the
left M1 and the anodal electrode placed on the skin
overlying the left shoulder region; Fig. 4d) has shown to
improve the detection of mismatches between a motor
and non-motor sentence/picture associations. This result
provided further evidence for the role of motor areas in
semantic processing of action verbs. The processing of
the meaning of action verbs also seems to be correlated
with PMC activity. Differential excitation and inhibition
of these areas using a-tDCS and c-tDCS over bilateral
PMC in the two possible montages before a lexical deci-
sion task showed complementary effects: a-tDCS over
the left PMC impaired performance in judging uniman-
ual actions while c-tDCS improved performance (elec-
trode size: 5 × 7 cm; 2 mA; 20min; the cathodal placed
at FC3 and the anodal at FC4; Fig. 4c) [144]. On the
other hand, the motor learning of speech production has
also been shown to be facilitated by tDCS modulation of
motor areas [291]. Overall, these studies and results ex-
emplify how tDCS has been used to test the degree of
superposition between language and motor networks,
contributing to other lines of evidence for the embodied
cognition accounts of both language comprehension and
production.
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Although most principled studies applying embodied
cognition and tDCS to date have focused on language,
these theoretical premises imply that other cognitive and
emotional domains might be influenced by motor net-
works modulation. tDCS applied over the right PMC
have been used to test the neural basis of a body owner-
ship illusion, namely the rubber hand in which a fake
hand is perceived as part of the body [292]. a-tDCS in-
creased the intensity of the illusion, with a greater mis-
perception of the position of the real hand to the fake
one. As pointed out by the authors, the possibility of un-
derstanding and influencing body ownership experiences
using tDCS might improve treatment and rehabilitation
in different neurological conditions. Particularly, the im-
proved neural representation of prostheses should im-
prove patient’s functionality.

Functionality and social aspects
The main objective in neurorehabilitation is on the rapid
establishment of independence in activities of daily living
(ADLs) through compensatory strategies [293]. Func-
tional impairment after injury could result in poor
performance in ADLs and social impairment [130]. A
proper approach in the neurorehabilitation practice
encourages the use of the WHO International Classifica-
tion of Functioning, Disability, and Health (ICF) [294, 295].
ICF is a universal framework and an international instru-
ment for describing all aspects of disability [295]. According
to this model, human (and individual) experience of func-
tioning is not considered as the consequence of a disease,
but the result of the interaction between a health condition
and both personal attributes and environmental influences
(social and contextual factors) [296]. Therefore, the ICF is a
biopsychosocial approach that incorporates health compo-
nents at the physical and social levels [296].
The challenge of neuromodulation is how to apply the

ICF for rehabilitation management in clinical practice.
tDCS could be part of a rehabilitation plan that comprises
four steps: assessment, goal setting, interventions and out-
come measurement [295]. ICF can be used as a reference
instrument and framework to define interventions to pro-
mote motor rehabilitation and motor learning. Studies
with tDCS demonstrate an improvement in motor per-
formance and motor learning in general practice for
healthy volunteers and patients suffering from neuro-
logical disorders [259, 268]. Almost in their entirety stud-
ies with healthy subjects or patients, the effects of tDCS
have been reported for motor tasks such as serial RT
tasks, adaptation tasks, or visuomotor tracking [32, 259].
However, for the new model of rehabilitation and inclu-
sion, it is necessary to study functional measures of ADLs
and the social aspects that tDCS can provide.
Disability often leads to reduced social participation,

regardless of physical or cognitive limitations [297].

Social aspects including participation restrictions were
evaluated using questionnaires and scales about the
success and difficulties to do exercise, go to church or
visit a friend [297]. The functional mobility concept con-
siders how an individual moves daily through the envir-
onment to achieve successful interactions with family
and society [298]. Studies with tDCS and motor rehabili-
tation presented interesting neurophysiologic data and
patient symptoms but few studies investigated the rela-
tionship about motor improvement and daily living or
social aspects. Floel [16] shown a summary statement on
the present use of tDCS in the treatment of neurological
disorders. None of the forty-six studies listed showed the
effects of tDCS on motor and cognitive function associ-
ated with social aspects [16].
Elsner et al. [299] described in a systematic review about

Parkinson that tDCS may improve impairment regarding
motor symptoms and ADLs. After investigating six trials
with a total of 137 participants, none of these studies
describe the effects of tDCS on improving social aspects.
Improvement in ADLs in people after stroke treated with
tDCS was found in nine studies with 396 participants
[130]. The authors found very low to moderate quality evi-
dence of effect regarding ADLs performance at the end of
the intervention period. Besides, no information about so-
cial aspects was found in this study [130]. For the ICF
model, it is important a comprehensive overview of the
patient functioning by presenting the assessment results
in all components of human functioning [296].
To the best of our knowledge, no studies were found in

motor rehabilitation with tDCS and ICF. There are several
advantages pointed with the ICF model. We can highlight
the possibility of standardization of concepts and, therefore,
the use of a standard language that allows communication
between researchers, managers, health professionals, civil
society organizations and users in general [294, 296]. Be-
sides, the ICF can be alternatively used to many sectors that
include health, education, social security, labor medicine,
statistics and public policies [294–296]. Studies about tDCS
and motor rehabilitation could evaluate not only body func-
tions but an integrative model of functioning, disability, and
health that involve tasks of involvement in a life situation,
environmental factors with social and attitudinal situations.
The use of ICF in neuromodulation practices com-

prise the incorporation of new technology, already
adopted by several sectors and multidisciplinary teams.
ICF should be widely explored in relation to its accept-
ability and validity including the impact on health care,
the potential in measuring the functional status of
patients and their use by information systems for the
elaboration of health statistics [295]. ICF could be used
to improve the legislation and the implementation of
public policies in neuromodulation for people with
disabilities.
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Although ICF has become a universal standard in the
neurorehabilitation process, there is still no integration
of this process into clinical routine and scientific re-
search involving tDCS. In general, however, it is clear
that ICF has many advantages in the process of rehabili-
tation, allowing the elaboration of rigorous research pro-
jects and the achievement of results that demonstrate its
value and potential.

Future perspectives
HD-tDCS on neurological disease, pain relief, and motor
learning/rehabilitation
The so-called “conventional” tDCS, which uses large
electrode pads involved in sponges embedded with saline
solution, apply a diffuse electrical current to the brain
which stimulates not only the target area but also un-
wanted regions in a non-predictable fashion. This pre-
sents a significant limitation given the low precision of
stimulation (focality), which makes it difficult to discern
which area contributed to the outcomes. In this regard,
HD-tDCS uses a series of small electrodes over the tar-
get which circumscribes the stimulation to the diameter
of the electrodes and presents improved focality as com-
pared to the conventional tDCS (for a specific view of
the HD-tDCS technique see [300]. Datta et al. [37]
showed that a ring electrodes HD-tDCS montage (4 × 1)
provided gyri precise stimulation while tDCS using elec-
trodes pads (7 × 5 cm) resulted in a diffuse electric field
(Fig. 2). Interestingly, the peak electric field was found to
be not underneath the active electrode in the conven-
tional tDCS, as it is usually presumed, while the HD-
tDCS resulted in peak electric field at the sulci and gyri
underneath the active electrode [37]. Experimental evi-
dence has suggested that HD-tDCS may induce superior
results compared to conventional tDCS [34]. For in-
stance, Kuo et al. [34] compared the effects of conven-
tional tDCS (electrode area 35 cm2) to HD-tDCS (4 × 1
ring configuration) using 2 mA for 10min on corticosp-
inal excitability, using MEP, in healthy participants. They
showed that HD-tDCS induced greater modulation in
MEP and this effect lasted longer than conventional
tDCS (i.e., more than two and less than 6 hours) [34].
Interestingly, HD-tDCS presented a delayed peak effect
magnitude, which occurred 30min after tDCS [34].
These present important implications for the use of
tDCS during training/therapy, given that the effect of
conventional tDCS seems to decrease linearly over time.
Thus, HD-tDCS represents a recent advance in
NIBS considering that it overcomes the limitation of
conventional tDCS. So far, however, few studies have
compared whether this increased focality promoted by
HD-tDCS could result in more significant improvements
in the outcomes. This could be mainly because this tech-
nology is relatively new. tDCS has shown promising

results for various neurological diseases [301–303]. For
instance, Aleman et al. [302] conducted a meta-analysis
of controlled trials and showed that NIBS of the frontal
cortex improved negative symptoms of patients with
schizophrenia, but the evidence for transcranial mag-
netic stimulation was stronger than for tDCS. Also, the
existent literature supports the positive effects of a-tDCS
on improving cognitive capacity in both healthy individ-
uals and neuropsychiatric patients [301, 304]. Hogeveen
et al. [305] compared the effect of HD-tDCS to three
montages of conventional tDCS on response inhibition
in healthy adults and found similar improvements for
both forms of tDCS. On the other hand, Gozenman and
Berryhill [306] showed that individuals with lower
baseline working memory capacity benefited more from
HD-tDCS than from conventional tDCS. In addition, an
impressive result was presented by Trofimov et al. [307]
who demonstrated that HD-tDCS (1 mA for 20min) 21
days after a TBI reduced the number of areas with
hypoperfusion and ischemia, increased cerebral blood
flow, cerebral blood volume, and shortened mean transit
time in 19 patients with TBI.
For some diseases/symptoms, however, there is still

little evidence and the effectiveness of tDCS is uncertain.
For instance, Elsner et al. [299] conducted a meta-
analysis and concluded that there is insufficient evidence
to determine the effect of tDCS on PD patients. A study
by Dagan et al. [138] compared the effect of a single ses-
sion of tDCS over M1 (single-target) and simultaneous
stimulation of M1 and DLPFC (multi-target) using HD-
tDCS on motor and cognitive function in PD patients.
They found improvements in motor (i.e., reduced sever-
ity of freezing of gate, timed up and go performance, gait
speed) and cognitive (i.e. Stroop interference test) per-
formance only after multi-target stimulation [138]. This
suggests that HD-tDCS targeting both motor and cogni-
tive regions may be more effective than single M1 stimu-
lation for PD. Studies using HD-tDCS for PD are scarce
so that it remains relatively unexplored whether this
technique could produce better results compared to
conventional tDCS. Similar to PD, the extant literature
does not support the efficacy of tDCS for treating audi-
tory hallucinations, a common symptom of schizophre-
nia [308]. However, two recent studies used HD-tDCS
for auditory hallucinations with promising results [309,
310]. Sreeraj et al. [309] applied HD-tDCS using the 4 ×
1 ring montage with a cathode as the central electrode
over CP5 (i.e. left temporoparietal junction) with 2 mA
for 20min, two sessions per day for five days on 19
schizophrenia patients and found a significant reduction
in persisting auditory hallucinations. Similarly, a case
series study in patients with dementia presenting severe
auditory hallucinations suggested that HD-tDCS appears
to be an effective treatment option [310].
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Meta-analytical evidence has shown that a-tDCS over
the S1 and M1 increase the sensory and pain threshold
in healthy individuals [311]. Similarly, a-tDCS over M1
and DLPFC decreased pain levels in patients suffering
from CP [247, 311, 312], which represent an improve-
ment clinically significant, as well as in quality of life
[247]. But only two studies with HD-tDCS were included
[313]. Interestingly, it has also been shown in another
meta-analysis that c-tDCS over S1 and M1 increased
sensory and pain thresholds in healthy individuals and
pain levels in patients [314]. Similar results were found
by Villamar et al. [313] that showed both anodal and
cathodal HD-tDCS reduced pain perception in patients
with fibromyalgia. As previously presented, HD-tDCS
presents improved focality in comparison to conven-
tional tDCS. DaSilva et al. [315] tested a variety of tDCS
montages targeting brain regions related to the pain pro-
cessing used in studies involving migraine and pain con-
trol and compared conventional to HD-tDCS with high-
resolution computational forward modeling. They
showed that conventional tDCS montages presented
large current flow and peaks of current flow often not at
the target of stimulation, occurring in deeper brain re-
gions, which in some cases were not even related to the
outcome (e.g. visual cortex) [315]. On the other hand,
HD-tDCS montages enhanced focality with peak current
flow in subcortical areas at negligible levels [315]. Stud-
ies comparing conventional to HD-tDCS for pain have
shown similar outcomes, however, for patients with tin-
nitus [316]. Remarkably, Castillo-Saavedra et al. [310]
performed a phase II open-label trial aiming to define a
treatment protocol for clinical treatment of pain in
fibromyalgia using HD-tDCS. They found that both re-
sponders and non-responders similarly improved quality
of life and decreased pain with a clinically significant
pain reduction of 50% in half of the sample [317]. Fi-
nally, the authors estimated 15 sessions of HD-tDCS to
reach clinically meaningful outcomes [317].
Regarding motor performance, a recent meta-analysis

confirmed that a-tDCS increases corticospinal excitabil-
ity of the M1 (i.e. MEP size), intracortical facilitation
and decrease short-interval intracortical inhibition in
healthy individuals [318, 319], which could implicate in-
creased motor performance, but only one study using
HD-tDCS was included [34]. Different studies have used
tDCS for motor performance enhancement, with some
showing positive results while others null results (see the
meta-analysis by Machado et al. [320] for a detailed dis-
cussion on the effect of tDCS on exercise performance).
Radel et al. [321] and Flood et al. [322] were the only
two studies to test the effects of HD-tDCS (4X1 ring
montage) on the time to task failure on a submaximal
contraction of the elbow flexors and knee extensors, re-
spectively, in healthy adults and showed no

improvement. These results were confirmed in a recent
meta-analysis that showed no significant improvement
in isometric strength performance [323]. On the other
hand, HD-tDCS (1 mA for 15 min) over bilateral M1
during motor training (3 days) improved unimanual and
bimanual dexterity in healthy individuals, suggesting a
positive effect on motor learning [324, 325]. However,
these studies did not include groups receiving conven-
tional tDCS to compare efficiency between both tech-
niques. Similar results of motor learning were also
shown with conventional tDCS (2 mA for 20 min) over
the M1 applied during motor training (5 days) in healthy
individuals [326]. In fact, meta-analytical evidence has
confirmed that both single and multiple session of tDCS
applied over the M1 improves motor learning in healthy
individuals and post-stroke patients [133, 327]. So far,
Cole et al. [328] performedthe only study comparing the
effects of conventional and HD-tDCS (4X1) over the M1
on motor learning in a group of children. Participants
underwent training over five consecutive days and were
assessed at baseline, post-training and 6 weeks after
training (i.e., retention). Both conventional and HD-
tDCS similarly improved motor learning not only after
training but also after 6 weeks as compared to the sham
group [328].
In sum, HD-tDCS holds the promise to be more ef-

fective than conventional tDCS, though since it is a rela-
tively new technique, there is a small number of studies
using HD-tDCS, and especially, comparing both forms
of stimulation. Soon, systematic reviews and meta-
analytical studies may be able to compare outcomes be-
tween techniques to elucidate efficiency. So far, the re-
sults found for HD-tDCS are at least comparable to
conventional tDCS.

tsDCS on clinical applications
In recent years, current polarization of the spinal cord
has emerged as a novel and promising method for
modulating spinal and supra-spinal excitability. The so-
called tsDCS has been assessed for the treatment of
pain [329–331], spasticity [332], stroke [333, 334] and
spinal cord lesions [207]. DCS intensity ranges from 1.5
to 3.0 mA, with effects lasting for minutes to hours
[90]; the device is the same used for tDCS, although
different authors have used electrodes of different sizes
and with different montages (Fig. 5), thus critically in-
fluencing current density and distribution in biological
tissues [335, 336].
A growing body of literature has shown that tsDCS

combines spinal and supra-spinal mechanisms of ac-
tion. The later prospect is particularly attractive; for in-
stance, in spinal cord injury (SCI) and stroke, tsDCS
may interfere with the maladaptive reorganization of
cortical sensorimotor maps, improving motor output
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and possibly preventing central pain sensitization [334,
337, 338]. That implies that tsDCS could be useful also
as an early rehabilitation strategy in patients with acute
brain lesions, when other NIBS tools are commonly
avoided due to safety concerns. Another advantage is
that tsDCS shows both in-line and off-line effects, thus
influencing task-dependent and task-independent neur-
onal plasticity [339–341].
tsDCS exerts polarity-specific effects opposite from

those reported for tDCS: while anodal tsDCS has an
overall inhibitory effect, cathodal polarization improves
the conduction along the corticospinal tract, spinothala-
mic and lemniscal pathways [342–344]. At a spinal level,
anodal stimulation acts directly on axons, without affect-
ing postsynaptic motor neuronal excitability, whereas
cathodal stimulation preferentially interferes with inter-
neuronal networks [345–347]. Specifically, in agreement
with its facilitatory action, cathodal tsDCS seems to im-
prove motor unit recruitment in healthy individuals,
likely through an inhibition of the Renshaw cells net-
work [346]. Others have reported similar effects of an-
odal and cathodal tsDCS [348], probably due to the
different protocols used or to the presence of genetic
polymorphisms [349].
Studies have also shown supra-spinal mechanisms of

action of tsDCS, both in animal [339] and human
models [346]. In particular, studies have demonstrated
tsDCS after-effects on intracortical GABA(a)ergic net-
works and interhemispheric processing of motor output

and visual stimuli [350, 351]; accordingly, Schweizer and
colleagues have recently shown that tsDCS modifies
functional FC within the somatomotor system in a
polarity-dependent manner [338]. These changes might
be not only secondary to plastic alterations occurring at
the level of stimulation, but also due to the direct modu-
lation of ascending spinal pathways, especially to the
noradrenergic locus coeruleus neurons which have wide-
spread projections to the neocortical brain [352].
Finally, a novel and exciting mechanism of action has

been recently proposed by Samaddar and co-workers
[353]: they found that tsDCS also modulates the migra-
tion and proliferation of adult newly born spinal cells in
mice, a cell population implicated in learning and mem-
ory; although the mechanisms are not fully understood,
these findings suggest that tsDCS could be used, also in
humans, as an early treatment to improve motor recov-
ery in spinal cord lesions. In this connection, another
study has confirmed that tsDCS increases locomotor
skill acquisition and retention in healthy volunteers
[354].

ctDCS and influence on motor learning
The cerebellum drives motor learning phenomena and
tDCS may offer an unique opportunity to study the in-
volvement in these processes [187, 355–359]; in fact,
despite interindividual differences, recent modeling stud-
ies have revealed that during ctDCS the current spread

Fig. 5 tsDCS electric field distribution in tissues. Lateral (1st row) and front (2nd row) view of the J amplitude distribution over spinal cord and
nerves for three different montages: a (left column, return electrode placed over right shoulder); b (middle column, return electrode over
abdomen); c (right column, return electrode at the vertex). Modified from Parazzini et al. [335], with permission
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to other structures outside the cerebellum is negligible
and unlikely to produce functional effects [360, 361].
From an historical perspective, the cerebellum and its

related brainstem nuclei regulate the conditioned
eyeblink response and contain long-term neuronal
changes, which serves to encode this learned response
[363–364]. The cerebellum is engaged in learning of
unspecific aversive reactions and cerebellar dysfunction
may lead to impaired short-term and long-term habitu-
ation of the startle response [365, 366], in agreement
with the preeminent cerebellar role in encoding external
negative stimuli [367, 368]. In a recent paper, Bocci and
colleagues have shown that the cerebellum in also in-
volved in motor learning finalized to defensive behavior
within the peripersonal space [369] (Fig. 6).
Overall, by evaluating RT and error rate scores as

clinical outcomes, several papers have recently dem-
onstrated that excitatory anodal ctDCS enhances both
on-line and off-line motor learning in healthy individ-
uals [358, 370–372], probably by speeding up motor
skill acquisition and accuracy (Cantarero [357] et al.,
2015), particularly when combined with anodal tDCS

over the primary motor cortex (M1; [351]. In this
scenario, the cerebellum and motor cortex likely have
distinct functional roles: whereas anodal ctDCS im-
proves acquisition, as proved by a faster reduction of
movement error, anodal M1 tDCS increased retention
without affecting new motor skills acquisition [355].
Another study has shown that cerebellar stimulation
does not affect the intermanual transfer of visuomotor
learning, a key process in visuomotor adaptation and
motor learning [373].

TMS as a tool to evaluate tDCS effects on brain
function
Proposed mechanisms for the therapeutic effects of
tDCS include neurophysiological changes such as modi-
fied excitability, plasticity, neuronal oscillations, and
connectivity between brain regions. TMS combined with
EEG or Electromyography (EMG) is a powerful method
that can be used to assess the integrity and modulation
of such brain processes, and thereby evaluate the effects
of a tDCS intervention [374, 375]. TMS excites the cor-
tex non-invasively through a time-varying magnetic field

Fig. 6 c-tDCS is able to modulate eyeblink conditioning, responsible for motor learning, as assesed by changes in Hand Blink Reflex (HBR)
amplitude and area (experimental conditions: a patched hand; b hand side). Modified from Bocci et al. [369], with permission
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induced by the application coil placed close to the sur-
face of the scalp [376, 377]. Several TMS protocols have
been designed using single and paired-pulse TMS ap-
plied to one or more brain regions (or peripherally) to
trigger and evaluate the integrity of specific brain pro-
cesses [374, 378].
TMS-EEG can be employed before, after, and during

an intervention to assess changes in brain circuitry and
neurophysiology. Schematically shown in Fig. 7, TMS
combined with concurrent EEG (TMS-EEG) can be used
to measure local and global changes in brain reactivity
and connectivity beyond the motor cortex. A TMS
evoked potential (TEP) can be detected by EEG after a
single pulse TMS. Different components of TEPs are
linked to the activation of different brain processes. For
example, earlier TEP components shown in Fig. 7a (e.g.,
positivity at 30 ms (P30)) are linked to excitatory mecha-
nisms while later components (e.g., negativity at 100 ms
(N100)) are linked to inhibitory processes [374]. In a few
studies in patients with implanted electrodes, the impact
of TMS on activation of corticospinal tract has been
captured (Fig. 7b) and characterized as direct (D) and in-
direct (I) waves of descending volleys related to TMS in-
duced activation of pyramidal and interneurons,
respectively [379]. Finally, TMS applied to the motor
cortex combined with peripheral EMG recording (TMS-
EMG, shown in Fig. 7c) can characterize MEP or
changes in EMG background activity. TMS-EMG can
assess changes in corticospinal excitability through mea-
sures such as resting and active motor threshold, and
cortical silent period (CSP), which are explained in detail
elsewhere [378, 380].

Therefore, TMS offers a controlled input to the brain
to study the integrity of various brain circuitry. TMS can
be also targeted to a specific brain region or network
using structural or functional neuronavigation with MRI,
fMRI or EEG [381]. It has been shown that TMS evoked
potentials from TMS-EEG are reproducible within indi-
viduals which suggests that the tool can be used in tDCS
test-retest studies [382, 383]. In recent years, signal pro-
cessing toolboxes including TMSEEG have been devel-
oped to standardize the process of TMS-EEG data
cleaning and preprocessing, including removing TMS-
induced artifacts [384], which assist in more widespread
adaptation of this methodology.
TMS-EEG shows great promise in extracting markers

of health in clinical populations [374, 385, 386], and in
characterizing healthy and disease brain states [387]. In
another general category of experiments, TMS can be
used to interfere with neural processes, while EEG
captures the effect of the intervention in comparison to
a baseline state [374].
TMS-EEG has been used in the literature to assess the

mechanism of action in tDCS interventions. For
example, single pulse TMS-EEG has been used to inves-
tigate the effects of cortical excitability and connectivity
by measuring changes in GMFAs and local TEPs follow-
ing both anodal and cathodal tDCS [7, 388]. For tDCS
applied beyond the motor cortex, it was found that an-
odal tDCS of the left DLPFC modulates cortical excit-
ability in patients with disorders of consciousness [389].
In a study of tDCS for post-stroke aphasia rehabilitation,
improvement in speech fluency was accompanied by
modified TMS-EEG response in tDCS stimulated areas

Fig. 7 Illustration of TMS-induced evoked potentials throughout the nervous system, adapted from [374]. a) TMS pulse induces evoked potential
detected by EEG recording. b TMS induced descending volleys in the corticospinal tract. c Motor evoked potential recorded by EMG
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[390]. Using power spectra analysis from TMS-EEG
data, it was shown that the beta and gamma band pow-
ers were modulated following HD-tDCS over the DLPFC
[391].
TMS-EMG is a useful tool to study the effects of tDCS

targeting the motor cortex. The crossed-facilitation (CF)
effect refers to when MEPs in one relaxed arm are facili-
tated by contractions in the opposite arm. Using TMS-
EMG to generate MEPs and CSPs, stimulation of the
right primary motor cortex (M1) with HD-tDCS was
shown to increase the effect of CF; possibly due to mod-
ulated interhemispheric connectivity [392]. Another
study used E-field modeling with experimental TMS-
EMG validation to find that only tDCS oriented orthog-
onal to M1 in the central sulcus can modulate TMS-
induced MEPs [86]. Multimodal approaches combining
transcranial electrical stimulation and TMS-EEG/EMG
can lead a deeper understanding of the effects and
neurological mechanisms of tDCS [375].
When using TMS-EEG in clinical populations and in

tDCS studies, several factors should be carefully consid-
ered and controlled. These include morphometry (changes
in evoked potentials with age), proper optimization of
TMS parameters, and varied genetics of study participants
leading to differences in neurological responses due to
stimulation [378]. Reproducibility of TMS-EEG measures
in clinical populations may be increased or decreased, pos-
sibly linked to disease-related changes in the brain struc-
ture and function, such as changes in neuroplastic
mechanisms [393]. Furthermore, TMS produces a loud
clicking noise upon application which results in non-
transcranial auditory evoked potentials [394], and can
cause peripheral somatosensory responses by stimulating
extracranial tissue electrically. These additional pathways
of TMS to generate TEPs highlight the need to control for
the effects of multisensory stimulation [395, 396]. Guide-
lines and recommendations for how to control for these
factors and how to run a TMS-EEG experiment can be
found in details elsewhere [374, 387].

Conclusion
There is increasing scientific evidence that tDCS modu-
lates the brain to establish new patterns of activity and
functional improvement in healthy and disabled individ-
uals. As the mechanisms of action underlying tDCS neu-
romodulation are better understood and technologies
become available, future research should focus on per-
sonalized tDCS protocols based on individual needs. In
addition, the integration of NIBS with neuroimaging,
particularly concurrent (online) integration, provides ob-
jective outcome measures and allows for the
optimization of interventions. Therefore, additional clin-
ical trials will help to elucidate the therapeutic role of
tDCS on neurorehabilitation in clinical practice.
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