394 research outputs found

    Super star cluster feedback driving ionization, shocks and outflows in the halo of the nearby starburst ESO 338-IG04

    Full text link
    Stellar feedback strongly affects the interstellar medium (ISM) of galaxies. Stellar feedback in the first galaxies likely plays a major role in enabling the escape of LyC photons, which contribute to the re-ionization of the Universe. Nearby starburst galaxies serve as local analogues allowing for a spatially resolved assessment of the feedback processes in these galaxies. We characterize the feedback effects from the star clusters in the local high-redshift analogue ESO 338-IG04 on the ISM and compare the results with the properties of the most massive clusters. We use high quality VLT/MUSE optical integral field data to derive the physical properties of the ISM such as ionization, density, shocks, and perform new fitting of the spectral energy distributions of the brightest clusters in ESO 338-IG04 from HST imaging. ESO 338-IG04 has a large ionized halo which we detect to a distance of 9 kpc. We identify 4 Wolf-Rayet (WR) clusters based on the blue and red WR bump. We follow previously identified ionization cones and find that the ionization of the halo increases with distance. Analysis of the galaxy kinematics shows two complex outflows driven by the numerous young clusters in the galaxy. We find a ring of shocked emission traced by an enhanced [OI]/Hα\alpha ratio surrounding the starburst and at the end of the outflow. Finally we detect nitrogen enriched gas associated with the outflow, likely caused by the WR stars in the massive star clusters. Photo-ionization dominates the central starburst and sets the ionization structure of the entire halo, resulting in a density bounded halo, facilitating the escape of LyC photons. Outside the central starburst, shocks triggered by an expanding super bubble become important. The shocks at the end of the outflow suggest interaction between the hot outflowing material and the more quiescent halo gas.Comment: Accepted for publication in Astronomy and Astrophysics, 22 pages, 15 figure

    MUSE Illuminates Channels for Lyman Continuum Escape in the Halo of SBS 0335-52E

    Full text link
    We report on the discovery of ionised gas filaments in the circum-galactic halo of the extremely metal-poor compact starburst SBS 0335-052E in a 1.5h integration with the MUSE integral-field spectrograph. We detect these features in Hα{\alpha} and [OIII] emission down to surface-brightness levels of 5×10−195 \times 10^{-19}erg s−1^{-1}cm−2^{-2}arcsec−2^{-2}. The filaments have projected diameters of 2.1 kpc and extend more than 9 kpc to the north and north-west from the main stellar body. We also detect extended nebular HeII λ\lambda4686 emission that brightens towards the north-west at the rim of a star-burst driven super-shell, suggestive of a locally enhanced UV radiation field due to shocks. We also present a velocity field of the ionised gas. The filaments appear to connect seamlessly in velocity space to the kinematical disturbances caused by the shell. Similar to high-zz star-forming galaxies, the ionised gas in this galaxy is dispersion dominated. We argue that the filaments were created via feedback from the starburst and that these ionised structures in the halo may act as escape channels for Lyman continuum radiation in this gas-rich system.Comment: Revised version after peer review. Accepted for publication in A&A letter

    Massive pre-main-sequence stars in M17: 1st1^{\rm st} and 2nd2^{\rm nd} overtone CO bandhead emission and the thermal infrared

    Get PDF
    Recently much progress has been made in probing the embedded stages of massive star formation, pointing to formation scenarios akin to a scaled up version of low-mass star formation. However, the latest stages of massive star formation have rarely been observed. Using 1st and 2nd overtone CO bandhead emission and near- to mid-infrared photometry we aim to characterize the remnant formation disks around 5 unique pre-main-sequence (PMS) stars with masses 6−12 M⊙6-12~\rm M_{\odot}, that have constrained stellar parameters thanks to their detectable photospheres. We seek to understand this emission and the disks it originates from in the context of the evolutionary stage of the studied sources. We use an analytic LTE disk model to fit the CO bandhead and the dust emission, found to originate in different disk regions. For the first time we modeled the 2nd overtone emission. Furthermore, we fit continuum normalized bandheads and show the importance of this in constraining the emission region. We also include 13CO^{13}\rm CO in our models as an additional probe of the young nature of the studied objects. We find that the CO emission originates in a narrow region close to the star (<1 AU) and under very similar disk conditions (temperatures and densities) for the different objects. This is consistent with previous modeling of this emission in a diverse range of young stellar objects. We discuss these results in the context of the positions of these PMS stars in the Hertzsprung-Russel diagram and the CO emission's association with early age and high accretion rates in (massive) young stellar objects. We conclude that, considering their mass range and for the fact that their photospheres are detected, the M17 PMS stars are observed in a relatively early formation stage. They are therefore excellent candidates for longer wavelength studies to further constrain the end stages of massive star formation.Comment: 21 pages, 12 figure

    Automatic SIMD vectorization for Haskell

    Get PDF
    Expressing algorithms using immutable arrays greatly simplifies the challenges of automatic SIMD vectorization, since several important classes of dependency violations cannot occur. The Haskell programming language provides libraries for programming with immutable arrays, and compiler support for optimizing them to eliminate the overhead of intermediate temporary arrays. We describe an implementation of automatic SIMD vectorization in a Haskell compiler which gives substantial vector speedups for arange of programs written in a natural programming style. We compare performance with that of programs compiled by the Glasgow Haskell Compile

    A ∼\sim15 kpc outflow cone piercing through the halo of the blue compact metal-poor galaxy SBS0335-052

    Get PDF
    Context: Outflows from low-mass star-forming galaxies are a fundamental ingredient for models of galaxy evolution and cosmology. Aims: The onset of kpc-scale ionised filaments in the halo of the metal-poor compact dwarf SBS 0335-052E was previously not linked to an outflow. We here we investigate whether these filaments provide evidence for an outflow. Methods: We obtained new VLT/MUSE WFM and deep NRAO/VLA B-configuration 21cm data of the galaxy. The MUSE data provide morphology, kinematics, and emission line ratios Hβ\beta/Hα\alpha and [\ion{O}{iii}]λ5007\lambda5007/Hα\alpha of the low surface-brightness filaments, while the VLA data deliver morphology and kinematics of the neutral gas in and around the system. Both datasets are used in concert for comparisons between the ionised and the neutral phase. Results: We report the prolongation of a lacy filamentary ionised structure up to a projected distance of 16 kpc at SBHα=1.5×10−18\mathrm{SB}_\mathrm{H\alpha} = 1.5\times10^{-18}erg s−1^{-1} cm−2^{-2}arcsec−2^{-2}. The filaments exhibit unusual low Hα\alpha/Hβ≈2.4\beta \approx 2.4 and low [\ion{O}{iii}]/Hα∼0.4−0.6\alpha \sim 0.4 - 0.6 typical of diffuse ionised gas. They are spectrally narrow (∼20\sim 20 km s−1^{-1}) and exhibit no velocity sub-structure. The filaments extend outwards of the elongated \ion{H}{I} halo. On small scales the NHIN_\mathrm{HI} peak is offset from the main star-forming sites. Morphology and kinematics of \ion{H}{I} and \ion{H}{II} reveal how star-formation driven feedback interacts differently with the ionised and the neutral phase. Conclusions: We reason that the filaments are a large scale manifestation of star-formation driven feedback, namely limb-brightened edges of a giant outflow cone that protrudes through the halo of this gas-rich system. A simple toy model of such a conical-structure is found to be commensurable with the observations.Comment: Accepted version in A&A after language editing. 22 pages, 24 figure

    Galaxy Collisions - Dawn of a New Era

    Full text link
    The study of colliding galaxies has progressed rapidly in the last few years, driven by observations with powerful new ground and space-based instruments. These instruments have used for detailed studies of specific nearby systems, statistical studies of large samples of relatively nearby systems, and increasingly large samples of high redshift systems. Following a brief summary of the historical context, this review attempts to integrate these studies to address the following key issues. What role do collisions play in galaxy evolution, and how can recently discovered processes like downsizing resolve some apparently contradictory results of high redshift studies? What is the role of environment in galaxy collisions? How is star formation and nuclear activity orchestrated by the large scale dynamics, before and during merger? Are novel modes of star formation involved? What are we to make of the association of ultraluminous X-ray sources with colliding galaxies? To what do degree do mergers and feedback trigger long-term secular effects? How far can we push the archaeology of individual systems to determine the nature of precursor systems and the precise effect of the interaction? Tentative answers to many of these questions have been suggested, and the prospects for answering most of them in the next few decades are good.Comment: 44 pages, 9 figures, review article in press for Astrophysics Update Vol.

    Probing the Early Evolution of Young High-Mass Stars

    Get PDF
    Near-infrared imaging surveys of high-mass star-forming regions reveal an amazingly complex interplay between star formation and the environment (Churchwell et al. 2006; Alvarez et al. 2004). By means of near-IR spectroscopy the embedded massive young stars can be characterized and placed in the context of their birth site. However, so far spectroscopic surveys have been hopelessly incomplete, hampering any systematic study of these very young massive stars. New integral field instrumentation available at ESO has opened the possibility to take a huge step forward by obtaining a full spectral inventory of the youngest massive stellar populations in star-forming regions currently accessible. Simultaneously, the analysis of the extended emission allows the characterization of the environmental conditions. The Formation and Early Evolution of Massive Stars (FEMS) collaboration aims at setting up a large observing campaign to obtain a full census of the stellar content, ionized material, outflows and PDR's over a sample of regions that covers a large parameter space. Complementary radio, mm and infrared observations will be used for the characterization of the deeply embedded population. For the first eight regions we have obtained 40 hours of SINFONI observations. In this contribution, we present the first results on three regions that illustrate the potential of this strategy.Comment: To appear in ASP Conf. Proceedings of "Massive Star Formation: Observations confront Theory", H. Beuther et al. (eds.), held in Heidelberg, September 200

    Massive Stars In The W33 Giant Molecular Complex

    Get PDF
    Rich in H II regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star-forming complex W33 is located at = ∼ ◦ l 12.8 and at a distance of 2.4 kpc and has a size of ≈10 pc and a total mass of ≈(0.8−8.0) × 105 M⊙. The integrated radio and IR luminosity of W33—when combined with the direct detection of methanol masers, the protostellar object W33A, and the protocluster embedded within the radio source W33 main—mark the region as a site of vigorous ongoing star formation. In order to assess the long-term star formation history, we performed an infrared spectroscopic search for massive stars, detecting for the first time 14 early-type stars, including one WN6 star and four O4–7 stars. The distribution of spectral types suggests that this population formed during the past ∼2–4 Myr, while the absence of red supergiants precludes extensive star formation at ages 6–30 Myr. This activity appears distributed throughout the region and does not appear to have yielded the dense stellar clusters that characterize other star-forming complexes such as Carina and G305. Instead, we anticipate that W33 will eventually evolve into a loose stellar aggregate, with Cyg OB2 serving as a useful, albeit richer and more massive, comparator. Given recent distance estimates, and despite a remarkably similar stellar population, the rich cluster Cl 1813–178 located on the northwest edge of W33 does not appear to be physically associated with W33

    The heritability of beta cell function parameters in a mixed meal test design

    Get PDF
    Aims/hypothesis: We estimated the heritability of individual differences in beta cell function after a mixed meal test designed to assess a wide range of classical and model-derived beta cell function parameters. Methods: A total of 183 healthy participants (77 men), recruited from the Netherlands Twin Register, took part in a 4 h protocol, which included a mixed meal test. Participants were Dutch twin pairs and their siblings, aged 20 to 49 years. All members within a family were of the same sex. Insulin sensitivity, insulinogenic index, insulin response and postprandial glycaemia were assessed, as well as model-derived parameters of beta cell function, in particular beta cell glucose sensitivity and insulin secretion rates. Genetic modelling provided the heritability of all traits. Multivariate genetic analyses were performed to test for overlap in the genetic factors influencing beta cell function, waist circumference and insulin sensitivity. Results: Significant heritabilities were found for insulinogenic index (63%), beta cell glucose sensitivity (50%), insulin secretion during the first 2 h postprandial (42-47%) and postprandial glycaemia (43-52%). Genetic factors influencing beta cell glucose sensitivity and insulin secretion during the first 30 postprandial min showed only negligible overlap with the genetic factors that influence waist circumference and insulin sensitivity. Conclusions/interpretation: The highest heritability for postprandial beta cell function was found for the insulinogenic index, but the most specific indices of heritability of beta cell function appeared to be beta cell glucose sensitivity and the insulin secretion rate during the first 30 min after a mixed meal. © The Author(s) 2011
    • …
    corecore