3 research outputs found

    A fused biometrics information graph convolutional neural network for effective classification of patellofemoral pain syndrome

    Get PDF
    Patellofemoral pain syndrome (PFPS) is a common, yet misunderstood, knee pathology. Early accurate diagnosis can help avoid the deterioration of the disease. However, the existing intelligent auxiliary diagnosis methods of PFPS mainly focused on the biosignal of individuals but neglected the common biometrics of patients. In this paper, we propose a PFPS classification method based on the fused biometrics information Graph Convolution Neural Networks (FBI-GCN) which focuses on both the biosignal information of individuals and the common characteristics of patients. The method first constructs a graph which uses each subject as a node and fuses the biometrics information (demographics and gait biosignal) of different subjects as edges. Then, the graph and node information [biosignal information, including the joint kinematics and surface electromyography (sEMG)] are used as the inputs to the GCN for diagnosis and classification of PFPS. The method is tested on a public dataset which contain walking and running data from 26 PFPS patients and 15 pain-free controls. The results suggest that our method can classify PFPS and pain-free with higher accuracy (mean accuracy = 0.8531 ± 0.047) than other methods with the biosignal information of individuals as input (mean accuracy = 0.813 ± 0.048). After optimal selection of input variables, the highest classification accuracy (mean accuracy = 0.9245 ± 0.034) can be obtained, and a high accuracy can still be obtained with a 40% reduction in test variables (mean accuracy = 0.8802 ± 0.035). Accordingly, the method effectively reflects the association between subjects, provides a simple and effective aid for physicians to diagnose PFPS, and gives new ideas for studying and validating risk factors related to PFPS

    Effects of zinc oxide and condensed tannins on the growth performance and intestinal health of weaned piglets in ETEC-challenged environment

    Get PDF
    This experiment was conducted to evaluate effects of zine oxide (ZnO) and condensed tannins (CT), independently or in combination, on the growth performance and intestinal health of weaned piglets in enterotoxigenic Escherichia coli (ETEC-K88)-challenged environment. Randomly divided 72 weaned piglets into 4 groups. Dietary treatments included the following: basic diet group (CON), 1,500 mg/kg zinc oxide group (ZnO), 1,000 mg/kg condensed tannins group (CT), and 1,500 mg/kg zinc oxide +1,000 mg/kg condensed tannins group (ZnO + CT). Dietary ZnO supplementation decreased diarrhea rate from 0 to 14 days, 15 to 28 days, and 0 to 28 days (p < 0.05) and no significant on growth performance. The effect of CT on reducing diarrhea rate and diarrhea index was similar to the results of ZnO. Compared with the CON group, ZnO increased the ileum villus height and improved intestinal barrier function by increasing the content of mucin 2 (MUC-2) in jejunum and ileum mucosa and the mRNA expression of zonula occludens-1 (ZO-1) in jejunum (p < 0.05) and the expression of Occludin in duodenum and ileum (p < 0.05). The effects of CT on intestinal barrier function genes were similar to that of ZnO. Moreover, the mRNA expression of cystic fibrosis transmembrane conductance regulator (CFTR) in jejunum and ileum was reduced in ZnO group (p < 0.05). And CT was also capable of alleviating diarrhea by decreasing CFTR expression and promote water reabsorption by increasing AQP3 expression (p < 0.05). In addition, pigs receiving ZnO diet had higher abundance of phylum Bacteroidetes, and genera Prevotella, and lower phylum Firmicutes and genera Lactobacillus in colonic contents. These results indicated that ZnO and CT can alleviate diarrhea and improve intestinal barrier function of weaned pigs in ETEC-challenged environment. In addition, the application of ZnO combined with CT did not show synergistic effects on piglet intestinal health and overall performance. This study provides a theoretical basis for the application of ZnO in weaning piglet production practices, we also explored effects of CT on the growth performance and intestinal health of weaned piglets in ETEC-challenged environment

    Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar

    Get PDF
    The inoculation of rice straw biochar with PAH-degrading Mycobacterium gilvum (1.27 × 1011 ± 1.24 × 1010 cell g−1), and the subsequent amendment of this composite material to PAHs contaminated (677 mg kg−1) coke plant soil, was conducted in order to investigate if would enhance PAHs biodegradation in soils. The microbe-biochar composite showed superior degradation capacity for phenanthrene, fluoranthene and pyrene. Phenanthrene loss in the microbe-biochar composite, free cell alone and biochar alone treatments was, respectively, 62.6 ± 3.2%, 47.3 ± 4.1% and non-significant (P > 0.05); whereas for fluoranthene loss it was 52.1 ± 2.3%; non-significant (P > 0.05) and non-significant (P > 0.05); and for pyrene loss it was 62.1 ± 0.9%; 19.7 ± 6.5% and 13.5 ± 2.8%. It was hypothesized that the improved remediation was underpinned by i) biochar enhanced mass transfer of PAHs from the soil to the carbonaceous biochar “sink”, and ii) the subsequent degradation of the PAHs by the immobilized M. gilvum. To test this mechanism, a surfactant (Brij 30; 20 mg g−1 soil), was added to impede PAHs mass transfer to biochar and sorption. The surfactant increased solution phase PAH concentrations and significantly (P < 0.05) reduced PAH degradation in the biochar immobilized M. gilvum treatments; indicating the enhanced degradation occurred between the immobilized M. gilvum and biochar sorbed PAHs
    corecore