182 research outputs found

    Extremely Anisotropic Scintillations

    Get PDF
    A small number of quasars exhibit interstellar scintillation on time-scales less than an hour; their scintillation patterns are all known to be anisotropic. Here we consider a totally anisotropic model in which the scintillation pattern is effectively one-dimensional. For the persistent rapid scintillators J1819+3845 and PKS1257-326 we show that this model offers a good description of the two-station time-delay measurements and the annual cycle in the scintillation time-scale. Generalising the model to finite anisotropy yields a better match to the data but the improvement is not significant and the two additional parameters which are required to describe this model are not justified by the existing data. The extreme anisotropy we infer for the scintillation patterns must be attributed to the scattering medium rather than a highly elongated source. For J1819+3845 the totally anisotropic model predicts that the particular radio flux variations seen between mid July and late August should repeat between late August and mid November, and then again between mid November and late December as the Earth twice changes its direction of motion across the scintillation pattern. If this effect can be observed then the minor-axis velocity component of the screen and the orientation of that axis can both be precisely determined. In reality the axis ratio is finite, albeit large, and spatial decorrelation of the flux pattern along the major axis may be observable via differences in the pairwise fluxes within this overlap region; in this case we can also constrain both the major-axis velocity component of the screen and the magnitude of the anisotropy.Comment: 5 pages, 4 figures, MNRAS submitte

    Hydrothermal quartz microtextures and depositional processes revealed by SEM-CL Imaging

    Get PDF
    SUMMARY -SEM-CL imaging of hydrothermal quartz from the Te Kopia geothermal field (New Zealand), complemented by fluid inclusion analysis, has revealed a complex history of crystal growth, dissolution and overprinting, unseen by other observational techniques. CL-dark quartz (characterised by euhedral growth zones) grew into fluid-filled space, at least m below the present ground surface, in a 195 reservoir. Movement on the Paeroa Fault provided pathways for fluids to move through the system, which resulted in further quartz precipitation, but SEM-CL evidence also shows that the quartz was partly dissolved, with later overprinting and void-filling by CL-bright quartz

    The connection between radio and high energy emission in black hole powered systems in the SKA era

    Get PDF
    Strong evidence exists for a highly significant correlation between the radio flux density and gamma-ray energy flux in blazars revealed by Fermi. However, there are central issues that need to be clarified in this field: what are the counterparts of the about 30% of gamma-ray sources that are as yet unidentified? Are they just blazars in disguise or they are something more exotic, possibly associated with dark matter? How would they fit in the radio-gamma ray connection studied so far? With their superb sensitivity, SKA1-MID and SKA1-SUR will help to resolve all of these questions. Even more, while the radio-MeV/GeV connection has been firmly established, a radio-VHE connection has been entirely elusive so far. The advent of CTA in the next few years and the expected CTA-SKA1 synergy will offer the chance to explore this connection, even more intriguing as it involves the opposite ends of the electromagnetic spectrum and the acceleration of particles up to the highest energies. We are already preparing to address these questions by exploiting data from the various SKA pathfinders and precursors. We have obtained 18 cm European VLBI Network observations of E>10 GeV sources, with a detection rate of 83%. Moreover, we are cross correlating the Fermi catalogs with the MWA commissioning survey: when faint gamma-ray sources are considered, pure positional coincidence is not significant enough for selecting counterparts and we need an additional physical criterion to pinpoint the right object. It can be radio spectral index, variability, polarization, or compactness, needing high angular resolution in SKA1-MID; timing studies can also reveal pulsars, which are often found from dedicated searches of unidentified gamma-ray sources. SKA will be the ideal instrument for investigating these characteristics in conjunction with CTA. (abridged)Comment: 12 pages, to be published in the proceedings of "Advancing Astrophysics with the Square Kilometre Array", PoS(AASKA14)15

    Observations of Intrahour Variable Quasars: Scattering in our Galactic Neighbourhood

    Full text link
    Interstellar scintillation (ISS) has been established as the cause of the random variations seen at centimetre wavelengths in many compact radio sources on timescales of a day or less. Observations of ISS can be used to probe structure both in the ionized insterstellar medium of the Galaxy, and in the extragalactic sources themselves, down to microarcsecond scales. A few quasars have been found to show large amplitude scintillations on unusually rapid, intrahour timescales. This has been shown to be due to weak scattering in very local Galactic ``screens'', within a few tens of parsec of the Sun. The short variability timescales allow detailed study of the scintillation properties in relatively short observing periods with compact interferometric arrays. The three best-studied ``intrahour variable'' quasars, PKS 0405-385, J1819+3845 and PKS 1257-326, have been instrumental in establishing ISS as the principal cause of intraday variability at centimetre wavelengths. Here we review the relevant results from observations of these three sources.Comment: 10 pages, 4 figures, to appear in Astronomical and Astrophysical Transaction

    Intraday variability of AGNs in the southern hemisphere

    Get PDF
    Understanding of the spectral and polarimetric characteristics of rapidly scintillating blazars is fundamental in order to describe both the innermost (sub-pc) regions of these compact objects and the interstellar medium responsible for the scintillation. A multi frequency analysis of the intraday variability in PMN J1326-5256, based on the combination of Australia Telescope Compact Array observations with the data from the monitoring projects at the University of Tasmania, will be described. Some implications concerning the structure of compact radio cores and the properties of the interstellar medium will be discussed

    Intra-day variability observations of S5 0716+714 over 4.5 years at 4.8 GHz

    Full text link
    We aim to search for evidence of annual modulation in the time scales of the BL Lac object S5 0716+714. The intra-day variability (IDV) observations were carried out monthly from 2005 to 2009, with the Urumqi 25m radio telescope at 4.8 GHz. The source has shown prominent IDV as well as long-term flux variations. The IDV time scale does show evidence in favor of an annual modulation, suggesting that the IDV of 0716+714 is dominated by interstellar scintillation. The source underwent a strong outburst phase between mid-2008 and mid-2009; a second intense flare was observed in late 2009, but no correlation between the total flux density and the IDV time scale is found, implying that the flaring state of the source does not have serious implications for the general characteristics of its intra-day variability. However, we find that the inner-jet position angle is changing throughout the years, which could result in an annual modulation noise in the anisotropic ISS model fit. There is also an indication that the lowest IDV amplitudes (rms flux density) correspond to the slowest time scales of IDV, which would be consistent with an ISS origin of the IDV of 0716+714.Comment: 6 pages, 7 figures, accepted for publication in A&A; corrected typos in Table

    SHRIMP ion probe zircon geochronology and Sr and Nd isotope geochemistry for southern Longwood Range and Bluff Peninsula intrusive rocks of Southland, New Zealand

    Get PDF
    Permian–Jurassic ultramafic to felsic intrusive complexes at Bluff Peninsula and in the southern Longwood Range along the Southland coast represent a series of intraoceanic magmatic arcs with ages spanning a time interval of 110 m.y. New SHRIMP U-Pb zircon data for a quartz diorite from the Flat Hill complex, Bluff Peninsula, yield an age of 259 ± 4 Ma, consistent with other geochronological and paleontological evidence confirming a Late Permian age. The new data are consistent with an age of c. 260 Ma for the intrusive rocks of the Brook Street Terrane. SHRIMP U-Pb zircon ages for the southern Longwood Range confirm that intrusions become progressively younger from east to west across the complex. A gabbro at Oraka Point (eastern end of coastal section) has an age of 245 ± 4 Ma and shows virtually no evidence of zircon inheritance. The age is significantly different from that of the Brook Street Terrane intrusives. Zircon ages from the western parts of the section are younger and more varied (203–227 Ma), indicating more complex magmatic histories. A leucogabbro dike from Pahia Point gives the youngest emplacement age of 142 Ma, which is similar to published U-Pb zircon ages for the Anglem Complex and Paterson Group on Stewart Island

    A seasonal cycle and an abrupt change in the variability characteristics of the intraday variable source S4 0954+65

    Full text link
    The BLLac object S4 0954+65 is one of the main targets of the Urumqi monitoring program targeting IntraDay Variable (IDV) sources. Between August 2005 and December 2009, the source was included in 41 observing sessions, carried out at a frequency of 4.8 GHz. The time analysis of the collected light curves, performed by applying both a structure function analysis and a specifically developed wavelet-based algorithm, discovered an annual cycle in the variability timescales, suggesting that there is a fundamental contribution by interstellar scintillation to the IDV pattern of the source. The combined use of the two analysis methods also revealed that there was a dramatic change in the variability characteristics of the source between February and March 2008, at the starting time of a strong outburst phase. The analysis' results suggest that the flaring state of the source coincides with the appearance of multiple timescales in its light curves, indicating that changes in the structure of the relativistically moving emitting region may strongly influence the variability observed on IDV timescales.Comment: 9 pages, 8 figures and 3 tables. Accepted for publication in Astronomy and Astrophysic

    Milliarcsecond-Scale Structure in the Gamma-Ray Loud Quasar PKS 1622-297

    Full text link
    We have made a high-resolution VLBI observation of the gamma-ray loud quasar PKS 1622-297 with the HALCA spacecraft and ground radio telescopes at 5 GHz in 1998 February, almost three years after the source exhibited a spectacular GeV gamma-ray flare. The source shows an elongated structure toward the west on the parsec scale. The visibility data are well modeled by three distinct components; a bright core and two weaker jet components. Comparison with previous observations confirms that the jet components have an apparent superluminal motion up to 12.1 h^{-1}c, with the inner jet components having lower superluminal speeds. We apply the inverse Compton catastrophe model and derive a Doppler factor, \delta, of 2.45, which is somewhat lower than that of other gamma-ray loud active galactic nuclei (AGNs), suggesting the source was in a more quiescent phase at the epoch of our observation. As an alternative probe of the sub-parsec scale structure, we also present the results from multi-epoch ATCA total flux monitoring, which indicate the presence of persistent intraday variability consistent with refractive interstellar scintillation. We examine the gamma-ray emission mechanism in the light of these observations.Comment: 10 pages, 6 figures, 3 tables, to appear in PASJ, Vol.58, No.
    corecore