20 research outputs found

    Overview: On the transport and transformation of pollutants in the outflow of major population centres – observational data from the EMeRGe European intensive operational period in summer 2017

    Get PDF
    Megacities and other major population centres (MPCs) worldwide are major sources of air pollution, both locally as well as downwind. The overall assessment and prediction of the impact of MPC pollution on tropospheric chemistry are challenging. The present work provides an overview of the highlights of a major new contribution to the understanding of this issue based on the data and analysis of the EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales) international project. EMeRGe focuses on atmospheric chemistry, dynamics, and transport of local and regional pollution originating in MPCs. Airborne measurements, taking advantage of the long range capabilities of the High Altitude and LOng Range Research Aircraft (HALO, https://www.halo-spp.de, last access: 22 March 2022), are a central part of the project. The synergistic use and consistent interpretation of observational data sets of different spatial and temporal resolution (e.g. from ground-based networks, airborne campaigns, and satellite measurements) supported by modelling within EMeRGe provide unique insight to test the current understanding of MPC pollution outflows. In order to obtain an adequate set of measurements at different spatial scales, two field experiments were positioned in time and space to contrast situations when the photochemical transformation of plumes emerging from MPCs is large. These experiments were conducted in summer 2017 over Europe and in the inter-monsoon period over Asia in spring 2018. The intensive observational periods (IOPs) involved HALO airborne measurements of ozone and its precursors, volatile organic compounds, aerosol particles, and related species as well as coordinated ground-based ancillary observations at different sites. Perfluorocarbon (PFC) tracer releases and model forecasts supported the flight planning, the identification of pollution plumes, and the analysis of chemical transformations during transport. This paper describes the experimental deployment and scientific questions of the IOP in Europe. The MPC targets – London (United Kingdom; UK), the Benelux/Ruhr area (Belgium, the Netherlands, Luxembourg and Germany), Paris (France), Rome and the Po Valley (Italy), and Madrid and Barcelona (Spain) – were investigated during seven HALO research flights with an aircraft base in Germany for a total of 53 flight hours. An in-flight comparison of HALO with the collaborating UK-airborne platform Facility for Airborne Atmospheric Measurements (FAAM) took place to assure accuracy and comparability of the instrumentation on board. Overall, EMeRGe unites measurements of near- and far-field emissions and hence deals with complex air masses of local and distant sources. Regional transport of several European MPC outflows was successfully identified and measured. Chemical processing of the MPC emissions was inferred from airborne observations of primary and secondary pollutants and the ratios between species having different chemical lifetimes. Photochemical processing of aerosol and secondary formation or organic acids was evident during the transport of MPC plumes. Urban plumes mix efficiently with natural sources as mineral dust and with biomass burning emissions from vegetation and forest fires. This confirms the importance of wildland fire emissions in Europe and indicates an important but discontinuous contribution to the European emission budget that might be of relevance in the design of efficient mitigation strategies. The present work provides an overview of the most salient results in the European context, with these being addressed in more detail within additional dedicated EMeRGe studies. The deployment and results obtained in Asia will be the subject of separate publications

    Characterization of a sialate-O-acetylesterase (NanS) from the oral pathogen Tannerella forsythia that enhances sialic acid release by NanH, its cognate sialidase.

    Get PDF
    Tannerella forsythia, a Gram-negative member of the Bacteroidetes has evolved to harvest and utilize sialic acid. The most common sialic acid in humans is a mono-N-acetylated version termed Neu5Ac (5-N-acetyl-neuraminic acid). Many bacteria are known to access sialic acid using sialidase enzymes. However, in humans a high proportion of sialic acid contains a second acetyl group attached via an O-group, i.e. chiefly O-acetylated Neu5,9Ac2 or Neu5,4Ac2. This diacetylated sialic acid is not cleaved efficiently by many sialidases and in order to access diacetylated sialic acid, some organisms produce sialate-O-acetylesterases that catalyse the removal of the second acetyl group. In the present study, we performed bioinformatic and biochemical characterization of a putative sialate-O-acetylesterase from T. forsythia (NanS), which contains two putative SGNH-hydrolase domains related to sialate-O-acetylesterases from a range of organisms. Purification of recombinant NanS revealed an esterase that has activity against Neu5,9Ac2 and its glycolyl form Neu5Gc,9Ac. Importantly, the enzyme did not remove acetyl groups positioned at the 4-O position (Neu5,4Ac2). In addition NanS can act upon complex N-glycans released from a glycoprotein [erythropoietin (EPO)], bovine submaxillary mucin and oral epithelial cell-bound glycans. When incubated with its cognate sialidase, NanS increased sialic acid release from mucin and oral epithelial cell surfaces, implying that this esterase improves sialic acid harvesting for this pathogen and potentially other members of the oral microbiome. In summary, we have characterized a novel sialate-O-acetylesterase that contributes to the sialobiology of this important human pathogen and has potential applications in the analysis of sialic acid diacetylation of biologics in the pharmaceutical industry

    Aprendizagem significativa no ensino de engenharia

    No full text
    Esse trabalho tem por objetivo mostrar as teorias da aprendizagem e em especial a utilização da teoria da Aprendizagem Significativa no ensino de Engenharia. É apresentado o conceito de mapa conceptual, que ajudará o professor a planejar suas aulas e também podem ser utilizados pelos alunos no auxílio da ancoragem de conhecimento e a consolidação do conhecimento.<br>That work has the objective to show the theories of learning and especially the use of the theory of the Significant Learning in teaching of Engineering. The idea of conceptual map is presented, which will help the teacher to plan his classes and it can also be used by the students in the aid of the knowledge anchorage and the consolidation of their knowledge
    corecore